
1.	 TypeScript	Handbook
2.	 Table	of	Contents
3.	 The	TypeScript	Handbook
4.	 Basic	Types
5.	 Interfaces
6.	 Functions
7.	 Literal	Types
8.	 Unions	and	Intersection	Types
9.	 Classes
10.	 Enums
11.	 Generics

This	copy	of	the	TypeScript	handbook	was	generated	on	Friday,	July	24,	2020
against	commit	dbb30a	with	TypeScript	3.9.

https://github.com/microsoft/TypeScript-Website/tree/dbb30a
https://www.typescriptlang.org//docs/handbook/release-notes/typescript-3-9.html

The	TypeScript	Handbook

About	this	Handbook

Over	20	years	after	its	introduction	to	the	programming	community,	JavaScript
is	now	one	of	the	most	widespread	cross-platform	languages	ever	created.
Starting	as	a	small	scripting	language	for	adding	trivial	interactivity	to
webpages,	JavaScript	has	grown	to	be	a	language	of	choice	for	both	frontend	and
backend	applications	of	every	size.	While	the	size,	scope,	and	complexity	of
programs	written	in	JavaScript	has	grown	exponentially,	the	ability	of	the
JavaScript	language	to	express	the	relationships	between	different	units	of	code
has	not.	Combined	with	JavaScript's	rather	peculiar	runtime	semantics,	this
mismatch	between	language	and	program	complexity	has	made	JavaScript
development	a	difficult	task	to	manage	at	scale.

The	most	common	kinds	of	errors	that	programmers	write	can	be	described	as
type	errors:	a	certain	kind	of	value	was	used	where	a	different	kind	of	value	was
expected.	This	could	be	due	to	simple	typos,	a	failure	to	understand	the	API
surface	of	a	library,	incorrect	assumptions	about	runtime	behavior,	or	other
errors.	The	goal	of	TypeScript	is	to	be	a	static	typechecker	for	JavaScript
programs	-	in	other	words,	a	tool	that	runs	before	your	code	runs	(static)	and
ensure	that	the	types	of	the	program	are	correct	(typechecked).

If	you	are	coming	to	TypeScript	without	a	JavaScript	background,	with	the
intention	of	TypeScript	being	your	first	language,	we	recommend	you	first	start
reading	the	documentation	on	JavaScript	at	the	Mozilla	Web	Docs.	If	you	have
experience	in	other	languages,	you	should	be	able	to	pick	up	JavaScript	syntax
quite	quickly	by	reading	the	handbook.

https://developer.mozilla.org/docs/Web/JavaScript/Guide

How	is	this	Handbook	Structured

The	handbook	is	split	into	two	sections:

The	Handbook

The	TypeScript	Handbook	is	intended	to	be	a	comprehensive	document	that
explains	TypeScript	to	everyday	programmers.	You	can	read	the	handbook
by	going	from	top	to	bottom	in	the	left-hand	navigation.

You	should	expect	each	chapter	or	page	to	provide	you	with	a	strong
understanding	of	the	given	concepts.	The	TypeScript	Handbook	is	not	a
complete	language	specification,	but	it	is	intended	to	be	a	comprehensive
guide	to	all	of	the	language's	features	and	behaviors.

A	reader	who	completes	the	walkthrough	should	be	able	to:

Read	and	understand	commonly-used	TypeScript	syntax	and	patterns
Explain	the	effects	of	important	compiler	options
Correctly	predict	type	system	behavior	in	most	cases
Write	a	.d.ts	declaration	for	a	simple	function,	object,	or	class

In	the	interests	of	clarity	and	brevity,	the	main	content	of	the	Handbook	will
not	explore	every	edge	case	or	minutiae	of	the	features	being	covered.	You
can	find	more	details	on	particular	concepts	in	the	reference	articles.

The	Handbook	Reference

The	handbook	reference	is	built	to	provide	a	richer	understanding	of	how	a
particular	part	of	TypeScript	works.	You	can	read	it	top-to-bottom,	but	each
section	aims	to	provide	a	deeper	explanation	of	a	single	concept	-	meaning
there	is	no	aim	for	continuity.

Non-Goals

Non-Goals
The	Handbook	is	also	intended	to	be	a	concise	document	that	can	be
comfortably	read	in	a	few	hours.	Certain	topics	won't	be	covered	in	order	to	keep
things	short.

Specifically,	the	Handbook	does	not	fully	introduce	core	JavaScript	basics	like
functions,	classes,	and	closures.	Where	appropriate,	we'll	include	links	to
background	reading	that	you	can	use	to	read	up	on	those	concepts.

The	Handbook	also	isn't	intended	to	be	a	replacement	for	a	language
specification.	In	some	cases,	edge	cases	or	formal	descriptions	of	behavior	will
be	skipped	in	favor	of	high-level,	easier-to-understand	explanations.	Instead,
there	are	separate	reference	pages	that	more	precisely	and	formally	describe
many	aspects	of	TypeScript's	behavior.	The	reference	pages	are	not	intended	for
readers	unfamiliar	with	TypeScript,	so	they	may	use	advanced	terminology	or
reference	topics	you	haven't	read	about	yet.

Finally,	the	Handbook	won't	cover	how	TypeScript	interacts	with	other	tools,
except	where	necessary.	Topics	like	how	to	configure	TypeScript	with	webpack,
rollup,	parcel,	react,	babel,	closure,	lerna,	rush,	bazel,	preact,	vue,	angular,
svelte,	jquery,	yarn,	or	npm	are	out	of	scope	-	you	can	find	these	resources
elsewhere	on	the	web.

Get	Started

Before	getting	started	with	Basic	Types,	we	recommend	reading	one	of	the
following	introductory	pages.	These	introductions	are	intended	to	highlight	key
similarities	and	differences	between	TypeScript	and	your	favored	programming
language,	and	clear	up	common	misconceptions	specific	to	those	languages.

TypeScript	for	New	Programmers
TypeScript	for	JavaScript	Programmers
TypeScript	for	OOP	Programmers
TypeScript	for	Functional	Programmers

https://www.staging-typescript.org/docs/handbook/basic-types.html
https://www.staging-typescript.org/docs/handbook/typescript-from-scratch.html
https://www.staging-typescript.org/docs/handbook/typescript-in-5-minutes.html
https://www.staging-typescript.org/docs/handbook/typescript-in-5-minutes-oop.html
https://www.staging-typescript.org/docs/handbook/typescript-in-5-minutes-func.html

Basic	Types

Introduction

For	programs	to	be	useful,	we	need	to	be	able	to	work	with	some	of	the	simplest
units	of	data:	numbers,	strings,	structures,	boolean	values,	and	the	like.	In
TypeScript,	we	support	much	the	same	types	as	you	would	expect	in	JavaScript,
with	a	convenient	enumeration	type	thrown	in	to	help	things	along.

Boolean

The	most	basic	datatype	is	the	simple	true/false	value,	which	JavaScript	and
TypeScript	call	a	boolean	value.

let	isDone:	boolean	=	false;Try

Number

As	in	JavaScript,	all	numbers	in	TypeScript	are	either	floating	point	values	or
BigIntegers.	These	floating	point	numbers	get	the	type	number,	while	BigIntegers
get	the	type	bigint.	In	addition	to	hexadecimal	and	decimal	literals,	TypeScript
also	supports	binary	and	octal	literals	introduced	in	ECMAScript	2015.

let	decimal:	number	=	6;

let	hex:	number	=	0xf00d;

let	binary:	number	=	0b1010;

let	octal:	number	=	0o744;

let	big:	bigint	=	100n;Try

String

Another	fundamental	part	of	creating	programs	in	JavaScript	for	webpages	and
servers	alike	is	working	with	textual	data.	As	in	other	languages,	we	use	the	type
string	to	refer	to	these	textual	datatypes.	Just	like	JavaScript,	TypeScript	also

https://www.typescriptlang.org/play/#code/DYUwLgBAlgzgIgewHYgFwQEYIaAhkiAXggDNdgYQBuIA
https://www.typescriptlang.org/play/#code/PTAEAEBcEMCcHMCmkBcoCiBlATABjwFAA2yoAJogMYCWAttEWgHYCutARorKALygBsAbmKkAFogAezNp259cEgGa5cZYSUih21JnACe0jl16hc7AIy5L60gHtKMRqFZG5p2wHYALF5ubt8GgBOpp8lrhMgkA

uses	double	quotes	(")	or	single	quotes	(')	to	surround	string	data.

let	color:	string	=	"blue";

color	=	"red";Try

You	can	also	use	template	strings,	which	can	span	multiple	lines	and	have
embedded	expressions.	These	strings	are	surrounded	by	the	backtick/backquote
(`)	character,	and	embedded	expressions	are	of	the	form	${	expr	}.

let	fullName:	string	=	`Bob	Bobbington`;

let	age:	number	=	37;

let	sentence:	string	=	`Hello,	my	name	is	${fullName}.

I'll	be	${age	+	1}	years	old	next	month.`;Try

This	is	equivalent	to	declaring	sentence	like	so:

let	sentence:	string	=

		"Hello,	my	name	is	"	+

		fullName	+

		".\n\n"	+

		"I'll	be	"	+

		(age	+	1)	+

		"	years	old	next	month.";Try

Array

TypeScript,	like	JavaScript,	allows	you	to	work	with	arrays	of	values.	Array
types	can	be	written	in	one	of	two	ways.	In	the	first,	you	use	the	type	of	the
elements	followed	by	[]	to	denote	an	array	of	that	element	type:

let	list:	number[]	=	[1,	2,	3];Try

The	second	way	uses	a	generic	array	type,	Array<elemType>:

let	list:	Array<number>	=	[1,	2,	3];Try

Tuple

Tuple	types	allow	you	to	express	an	array	with	a	fixed	number	of	elements
whose	types	are	known,	but	need	not	be	the	same.	For	example,	you	may	want	to

https://www.typescriptlang.org/play/#code/DYUwLgBAxg9sMCcBcEDOYEEsB2BzCAvBAEQBGwAriMQNwBQs8ChJCIAJrUA
https://www.typescriptlang.org/play/#code/DYUwLgBAZgrswDkCGBbEAuCBnMAnAlgHYDmEAvBAAYBCA9gEYR331HFi2GUDcAUKJCTEMEQjBT0QuchADMAdj4DsIQmFUBjETgIkZlABIh4tADQQUAT1GoQEfFggASAN6x4yNAF8AdL14AkgDk8BCSzi5CdgDUEACMXhCWIEi4jrTAACaiIAAekCicYAAWPjxAA
https://www.typescriptlang.org/play/#code/DYUwLgBAZgrswDkCGBbEAuCBnMAnAlgHYDmEAvBAAYBCA9gEYR331HFi2GUDcAUKJCTEMEQjBT0QuchADMAdj4B6JRAC0GgMYwwGtf3DYQhMMc0icBEuV4QIAIgASIeLQA0EFAE9RqEBHwsBwgAaltoOEQ-UPD7ADoAHUIk+xi7ewBJAHJ4CElgsLsACiF-EIgARgBKNOCvECRcINpgABNREAAPSBROMAALOPtuIA
https://www.typescriptlang.org/play/#code/DYUwLgBMCWDOYC4IDsCuBbARiATgbQF0IBeCPARgBoIAmagZgIG4g
https://www.typescriptlang.org/play/#code/DYUwLgBMCWDOYC4IEEBOqCGBPAPAOwFcBbAIxFQD4IBeCAbQEYAaCAJhYGYBdAbiA

represent	a	value	as	a	pair	of	a	string	and	a	number:

//	Declare	a	tuple	type

let	x:	[string,	number];

//	Initialize	it

x	=	["hello",	10];	//	OK

//	Initialize	it	incorrectly

x	=	[10,	"hello"];	//	Error

Type	'number'	is	not	assignable	to	type	'string'.

Type	'string'	is	not	assignable	to	type	'number'.

Try

When	accessing	an	element	with	a	known	index,	the	correct	type	is	retrieved:

//	OK

console.log(x[0].substring(1));

console.log(x[1].substring(1));

Property	'substring'	does	not	exist	on	type	'number'.

Try

Accessing	an	element	outside	the	set	of	known	indices	fails	with	an	error:

x[3]	=	"world";

Tuple	type	'[string,	number]'	of	length	'2'	has	no	element	at	index	'3'.

console.log(x[5].toString());

Object	is	possibly	'undefined'.

Tuple	type	'[string,	number]'	of	length	'2'	has	no	element	at	index	'5'.

Try

Enum

A	helpful	addition	to	the	standard	set	of	datatypes	from	JavaScript	is	the	enum.
As	in	languages	like	C#,	an	enum	is	a	way	of	giving	more	friendly	names	to	sets
of	numeric	values.

enum	Color	{

		Red,

		Green,

		Blue,

}

let	c:	Color	=	Color.Green;Try

https://www.typescriptlang.org/play/#code/PTAEAEFMCdoe2gZwFygEwGY1oFAlACKQDGANgIbSSjmgAuArgA6nV0CeTkOrdoAHqgDaiOtACWAOwDmAGlCSGAWwBGMALoBuPGACSk8XXHlS4gF7VDOfqAC8oIQCIAFpFKk4j+QEYADFtB8AHkAaR1QfUNjUwtQQzjJYgQqYjpSdms7Bz95FzcPRwD8AFFYBCA
https://www.typescriptlang.org/play/#code/PTAEAEFMCdoe2gZwFygEwGYME4BQAbSAF1AA9UBtRI6ASwDsBzAGlHoFcBbAIxgF0A3LlKgAvKAoAiABaR8+OJNYBGAAyDQIUAHkA0rhBgAtCYDG7IiaMGwe3Kbj1EcQgDoFjABSkK614nZuajomT2UASnChe0dnNw9vCmU+f0Dghi8IqKA
https://www.typescriptlang.org/play/#code/PTAEAEFMCdoe2gZwFygEwBYCcBmdBWHNdItAKABtIAXUAD1QG1FroBLAOwHMAaUDgK4BbAEYwAugG4ydUAF5QjAEQALSBQpwlfAIwAGKaBCgA8gGkyIMAFpbAYwHVb1mYxzj5oJQHcEFACZK0mR2cByIcFQAdJpcABR0jPjiUdRwAMqsnPEAlDmSQA
https://www.typescriptlang.org/play/#code/KYOwrgtgBAwg9gGzgJygbwFBSgJWAEwBosoBxZYUY7AIQTGGIF8MFgAXKAYwC5ZEUUALz8kyAHTlKIANxA

By	default,	enums	begin	numbering	their	members	starting	at	0.	You	can	change
this	by	manually	setting	the	value	of	one	of	its	members.	For	example,	we	can
start	the	previous	example	at	1	instead	of	0:

enum	Color	{

		Red	=	1,

		Green,

		Blue,

}

let	c:	Color	=	Color.Green;Try

Or,	even	manually	set	all	the	values	in	the	enum:

enum	Color	{

		Red	=	1,

		Green	=	2,

		Blue	=	4,

}

let	c:	Color	=	Color.Green;Try

A	handy	feature	of	enums	is	that	you	can	also	go	from	a	numeric	value	to	the
name	of	that	value	in	the	enum.	For	example,	if	we	had	the	value	2	but	weren't
sure	what	that	mapped	to	in	the	Color	enum	above,	we	could	look	up	the
corresponding	name:

enum	Color	{

		Red	=	1,

		Green,

		Blue,

}

let	colorName:	string	=	Color[2];

//	Displays	'Green'

console.log(colorName);Try

Unknown

We	may	need	to	describe	the	type	of	variables	that	we	do	not	know	when	we	are
writing	an	application.	These	values	may	come	from	dynamic	content	–	e.g.
from	the	user	–	or	we	may	want	to	intentionally	accept	all	values	in	our	API.	In
these	cases,	we	want	to	provide	a	type	that	tells	the	compiler	and	future	readers
that	this	variable	could	be	anything,	so	we	give	it	the	unknown	type.

https://www.typescriptlang.org/play/#code/KYOwrgtgBAwg9gGzgJygbwFBSgJWAEygF4oBGAGiygHFlhRLsAhBMYSgXwwWABcoAxgC5YiFMVFJkAOlr0QAbiA
https://www.typescriptlang.org/play/#code/KYOwrgtgBAwg9gGzgJygbwFBSgJWAEygF4oBGAGiygHFlhRioAmS7AIQTGEYBZKBfDAmAAXKAGMAXLEQpG8JMgB0teiADcQA
https://www.typescriptlang.org/play/#code/KYOwrgtgBAwg9gGzgJygbwFBSgJWAEygF4oBGAGiygHFlhRLsAhBMYSgXwwWABcoAxohQA5AIYRgALigBnXsgCWIAObFYw5AG0ATAF0A3BgwB6E1AAii2QAcEYgJ6yoAclr0QLjEJCzEwADokFQAKISRkcUkASgMgA

let	notSure:	unknown	=	4;

notSure	=	"maybe	a	string	instead";

//	OK,	definitely	a	boolean

notSure	=	false;Try

If	you	have	a	variable	with	an	unknown	type,	you	can	narrow	it	to	something
more	specific	by	doing	typeof	checks,	comparison	checks,	or	more	advanced
type	guards	that	will	be	discussed	in	a	later	chapter:

declare	const	maybe:	unknown;

//	'maybe'	could	be	a	string,	object,	boolean,	undefined,	or	other	types

const	aNumber:	number	=	maybe;

Type	'unknown'	is	not	assignable	to	type	'number'.

if	(maybe	===	true)	{

		//	TypeScript	knows	that	maybe	is	a	boolean	now

		const	aBoolean:	boolean	=	maybe;

		//	So,	it	cannot	be	a	string

		const	aString:	string	=	maybe;

Type	'boolean'	is	not	assignable	to	type	'string'.

}

if	(typeof	maybe	===	"string")	{

		//	TypeScript	knows	that	maybe	is	a	string

		const	aString:	string	=	maybe;

		//	So,	it	cannot	be	a	boolean

		const	aBoolean:	boolean	=	maybe;

Type	'string'	is	not	assignable	to	type	'boolean'.

}Try

Any

In	some	situations,	not	all	type	information	is	available	or	it's	declaration	would
take	an	inappropriate	amount	of	effort.	These	may	occur	for	values	from	code
that	has	been	written	without	TypeScript	or	a	3rd	party	library.	In	these	cases,
we	might	want	to	opt-out	of	type	checking.	To	do	so,	we	label	these	values	with
the	any	type:

declare	function	getValue(key:	string):	any;

//	OK,	return	value	of	'getValue'	is	not	checked

const	str:	string	=	getValue("myString");Try

https://www.typescriptlang.org/play/#code/DYUwLgBAdg9mDKBXATiAXBRUDWsDuUEAvBACwDcAULAiiMRAEQC2AhgJ4BG9rEAzmGQBLKAHMIIgSFYATRlUoB6RRADyAaQA0EGSABmIoWBDB2EXpxgxQrKNThJUDPa2B8Q5IA
https://www.typescriptlang.org/play/#code/PTAEAEFMCdoe2gZwFygEwGY1vVnnsAoAE0gGMAbAQ2klDLgDtEAXUAWyoE8AjSVAK6MA1ozgB3RgG5CIUAHJOvSPPpwBFYqD6gqoVtACWjAOYAaUHB4Arciws84cCpCqMLQ0gDNjkYhYRLFgALGFAWLgAHSERCBmY2KgA5AXY+aFRGVPTQAF4Obj4ZQkMvUAAKJR1cmvDoAUgASlAAb0JQUDkAFSjIAGUyI0i2UQlEcOCqNiq6Q3G9R2dXRlAxcXa1BN0AIScXN1RF-ZX8mZkOuT64C0M2MjcxNh09A2MTDfjWXT6WI1NUV6mPIFZQyAC+hBKZXKEWicDKMzytQARICTMjmm0LmAetEBkMRmtxiEpiCdHNdPpfm8PkwvlQfn8TADqUDToVIOdOmArjc7g84E86As9staVsqLslgdtKK3MCzoQwUA
https://www.typescriptlang.org/play/#code/CYUwxgNghgTiAEAzArgOzAFwJYHtXwHMQMA1KCZEACgGsQBPALngGcMYtUCBKZqVegG4AUAHpR8APIBpADTw4GZDHwA3cpXg5E8AORFSGkLvhYW8VDgzwwAC3B1gwsHjat2zNhy7wAvIWIyCmoAIgBbegBldk4CEO5BIA

The	any	type	is	a	powerful	way	to	work	with	existing	JavaScript,	allowing	you	to
gradually	opt-in	and	opt-out	of	type	checking	during	compilation.

Unlike	unknown,	variables	of	type	any	allow	you	to	access	arbitrary	properties,
even	ones	that	don't	exist.	These	properties	include	functions	and	TypeScript
will	not	check	their	existence	or	type:

let	looselyTyped:	any	=	4;

//	OK,	ifItExists	might	exist	at	runtime

looselyTyped.ifItExists();

//	OK,	toFixed	exists	(but	the	compiler	doesn't	check)

looselyTyped.toFixed();

let	strictlyTyped:	unknown	=	4;

strictlyTyped.toFixed();

Object	is	of	type	'unknown'.

Try

The	any	will	continue	to	propagate	through	your	objects:

let	looselyTyped:	any	=	{};

let	d	=	looselyTyped.a.b.c.d;

//		^	=	let	d:	anyTry

After	all,	remember	that	all	the	convenience	of	any	comes	at	the	cost	of	losing
type	safety.	Type	safety	is	one	of	the	main	motivations	for	using	TypeScript	and
you	should	try	to	avoid	using	any	when	not	necessary.

Void

void	is	a	little	like	the	opposite	of	any:	the	absence	of	having	any	type	at	all.	You
may	commonly	see	this	as	the	return	type	of	functions	that	do	not	return	a	value:

function	warnUser():	void	{

		console.log("This	is	my	warning	message");

}Try

Declaring	variables	of	type	void	is	not	useful	because	you	can	only	assign	null
(only	if	--strictNullChecks	is	not	specified,	see	next	section)	or	undefined	to
them:

let	unusable:	void	=	undefined;

https://www.typescriptlang.org/play/#code/PTAEAEFMCdoe2gZwFygEwFYDsBGAUADaQAuoBccikBAngCo0AOkAJqgIYB2NoAvKABYA3HhCgA8gGkANKACWAMwCSxAKIAPOYmKJQAWzkBzABalIm7aHaloAV07E5eyIQpVaDZiwB0ilRq0dAAoAShExKVliOAAxOXVWUHNA3SCAI1tSYmNIUABjOD1GOSJoUBY4SEROAHJSPJy8gGsQ10pqeiZWb2i4hJZQkUISUG1oOTziDy62UHsmzjgAd04+QRExianOrx7Y+NZBoA
https://www.typescriptlang.org/play/#code/DYUwLgBMD20M4mATwCpIA4gCYC4IEMA7JCAXggG8BfAbgChRIsypYFk1MsA6fbgI24BjblnoB6cRAgA9APxA
https://www.typescriptlang.org/play/#code/GYVwdgxgLglg9mABAdwIYCcwFUDOBTdACgEoAuRANzhgBNEBvAKEUQgRzgBs8A6TuAOaEARABUAFjByIpiALYBPFBjAwwA+Xhw5UAvMOIBuRgF8gA

//	OK	if	`--strictNullChecks`	is	not	given

unusable	=	null;Try

Null	and	Undefined

In	TypeScript,	both	undefined	and	null	actually	have	their	own	types	named
undefined	and	null	respectively.	Much	like	void,	they're	not	extremely	useful	on
their	own:

//	Not	much	else	we	can	assign	to	these	variables!

let	u:	undefined	=	undefined;

let	n:	null	=	null;Try

By	default	null	and	undefined	are	subtypes	of	all	other	types.	That	means	you
can	assign	null	and	undefined	to	something	like	number.

However,	when	using	the	--strictNullChecks	flag,	null	and	undefined	are	only
assignable	to	unknown,	any	and	their	respective	types	(the	one	exception	being
that	undefined	is	also	assignable	to	void).	This	helps	avoid	many	common
errors.	In	cases	where	you	want	to	pass	in	either	a	string	or	null	or	undefined,
you	can	use	the	union	type	string	|	null	|	undefined.

Union	types	are	an	advanced	topic	that	we'll	cover	in	a	later	chapter.

As	a	note:	we	encourage	the	use	of	--strictNullChecks	when	possible,	but
for	the	purposes	of	this	handbook,	we	will	assume	it	is	turned	off.

Never

The	never	type	represents	the	type	of	values	that	never	occur.	For	instance,
never	is	the	return	type	for	a	function	expression	or	an	arrow	function	expression
that	always	throws	an	exception	or	one	that	never	returns.	Variables	also	acquire
the	type	never	when	narrowed	by	any	type	guards	that	can	never	be	true.

The	never	type	is	a	subtype	of,	and	assignable	to,	every	type;	however,	no	type
is	a	subtype	of,	or	assignable	to,	never	(except	never	itself).	Even	any	isn't
assignable	to	never.

https://www.typescriptlang.org/play/#code/PTAEAEGcBcCcEsDG0BcoBmBDANpApgFDZ7SgCuAdmZJgEbFoBuA9vACagC85Fbe68CnjYBuAiFAB5ANKh46UAAMAtMpgJkAOTLZsAYQAWeRAGtIiuZFAVmpAObxGeCgUrU6xLtZ3YRQA
https://www.typescriptlang.org/play/#code/PTAEDkHsBdQWwK4GMAWoCmAbAzu0B3PJAQwDtRjtsBLAc3OklGhXV1ADdiAna4gI0xsAhACghsBAC5QCUgBN0AM2ql080AF5ZC5avUBucelikZpBJkxbQFqwaA

Some	examples	of	functions	returning	never:

//	Function	returning	never	must	not	have	a	reachable	end	point

function	error(message:	string):	never	{

		throw	new	Error(message);

}

//	Inferred	return	type	is	never

function	fail()	{

		return	error("Something	failed");

}

//	Function	returning	never	must	not	have	a	reachable	end	point

function	infiniteLoop():	never	{

		while	(true)	{}

}Try

Object

object	is	a	type	that	represents	the	non-primitive	type,	i.e.	anything	that	is	not
number,	string,	boolean,	symbol,	null,	or	undefined.

With	object	type,	APIs	like	Object.create	can	be	better	represented.	For
example:

declare	function	create(o:	object	|	null):	void;

//	OK

create({	prop:	0	});

create(null);

create(42);

Argument	of	type	'42'	is	not	assignable	to	parameter	of	type	'object	|	null'.

create("string");

Argument	of	type	'"string"'	is	not	assignable	to	parameter	of	type	'object	|	null'.

create(false);

Argument	of	type	'false'	is	not	assignable	to	parameter	of	type	'object	|	null'.

create(undefined);

Argument	of	type	'undefined'	is	not	assignable	to	parameter	of	type	'object	|	null'.

Try

Generally,	you	won't	need	to	use	this.

Type	assertions

https://www.typescriptlang.org/play/#code/PTAEDEFcDsGMBcCWB7aoBOBTel3UdAOajSYBum6oAtpAM7wnKMAWAhhaGxpm7OwCMANplCZoAE1AAHZAXgAoAGYwEKNJXTJ0ACmqY6dNoUwAuUA3QFCASnOkKVAN4LQoeCy0B3Eph8BRdC1dfUNjTBsAbgUAXwUFEFAASWglTUwpLBw8dwBPaVFEOl9HZVUkVFAlNkQhHRtQFzcs3A0g7R0AIgBlZH0PayqakQlOqNj4xKg4CrQWvEGHShp6RmhmUHZObiw+QRExSRk5aEUVGfVQAiUCRHhMABlkZGl6+3JlptAvFlrRHXg6EgEUacRiQA
https://www.typescriptlang.org/play/#code/PTAEAEFMCdoe2gZwFygEwGYAsBWAUACaQDGANgIbSSgBmArgHbEAuAlnA6MVec5ABRxUcAEYArEs1AAfUAzqlSASlQA3OKwIBuPHhCgA8gGk83SLwEBvUAAd4N1AAZQAXyU6zF-vMXvdnvn4sND8AgQAiRGZoVgYAc3DQnkCaclJESCTzQMYiGljIAncgA

Type	assertions

Sometimes	you'll	end	up	in	a	situation	where	you'll	know	more	about	a	value
than	TypeScript	does.	Usually	this	will	happen	when	you	know	the	type	of	some
entity	could	be	more	specific	than	its	current	type.

Type	assertions	are	a	way	to	tell	the	compiler	"trust	me,	I	know	what	I'm	doing."
A	type	assertion	is	like	a	type	cast	in	other	languages,	but	performs	no	special
checking	or	restructuring	of	data.	It	has	no	runtime	impact,	and	is	used	purely	by
the	compiler.	TypeScript	assumes	that	you,	the	programmer,	have	performed	any
special	checks	that	you	need.

Type	assertions	have	two	forms.

One	is	the	as-syntax:

let	someValue:	any	=	"this	is	a	string";

let	strLength:	number	=	(someValue	as	string).length;Try

The	other	version	is	the	"angle-bracket"	syntax:

let	someValue:	any	=	"this	is	a	string";

let	strLength:	number	=	(<string>someValue).length;Try

The	two	samples	are	equivalent.	Using	one	over	the	other	is	mostly	a	choice	of
preference;	however,	when	using	TypeScript	with	JSX,	only	as-style	assertions
are	allowed.

A	note	about	let

You	may	have	noticed	that	so	far,	we've	been	using	the	let	keyword	instead	of
JavaScript's	var	keyword	which	you	might	be	more	familiar	with.	The	let
keyword	is	actually	a	newer	JavaScript	construct	that	TypeScript	makes
available.	We'll	discuss	the	details	later,	but	many	common	problems	in
JavaScript	are	alleviated	by	using	let,	so	you	should	use	it	instead	of	var
whenever	possible.

https://www.typescriptlang.org/play/#code/DYUwLgBAzg9gtiAagQ2AVxALgsgdgTwgF4IAiMACwEsoIadowAnK3Ac1IG4Aob0SKMwAyIdpWy40cAEYgmxCAApYCFOhA5agluwCUAOlBiKnIA
https://www.typescriptlang.org/play/#code/DYUwLgBAzg9gtiAagQ2AVxALgsgdgTwgF4IAiMACwEsoIadowAnK3Ac1IG4Aob0SKMwAyIdpWy40cAEYgmxCAAoAPIJbsAfLAQp0IAJQA6UGIqcgA

Interfaces
One	of	TypeScript's	core	principles	is	that	type	checking	focuses	on	the	shape
that	values	have.	This	is	sometimes	called	"duck	typing"	or	"structural
subtyping".	In	TypeScript,	interfaces	fill	the	role	of	naming	these	types,	and	are
a	powerful	way	of	defining	contracts	within	your	code	as	well	as	contracts	with
code	outside	of	your	project.

Our	First	Interface

The	easiest	way	to	see	how	interfaces	work	is	to	start	with	a	simple	example:

function	printLabel(labeledObj:	{	label:	string	})	{

		console.log(labeledObj.label);

}

let	myObj	=	{	size:	10,	label:	"Size	10	Object"	};

printLabel(myObj);Try

The	type	checker	checks	the	call	to	printLabel.	The	printLabel	function	has	a
single	parameter	that	requires	that	the	object	passed	in	has	a	property	called
label	of	type	string.	Notice	that	our	object	actually	has	more	properties	than
this,	but	the	compiler	only	checks	that	at	least	the	ones	required	are	present	and
match	the	types	required.	There	are	some	cases	where	TypeScript	isn't	as	lenient,
which	we'll	cover	in	a	bit.

We	can	write	the	same	example	again,	this	time	using	an	interface	to	describe
the	requirement	of	having	the	label	property	that	is	a	string:

interface	LabeledValue	{

		label:	string;

}

function	printLabel(labeledObj:	LabeledValue)	{

		console.log(labeledObj.label);

}

let	myObj	=	{	size:	10,	label:	"Size	10	Object"	};

https://www.typescriptlang.org/play/#code/GYVwdgxgLglg9mABABwE4zFAMgQwEYCmANgBRH7EEAmA8ngFYBciA3ouYUcwM5TpgBzRAF8AlKwBQiRBATc4RAgDoicAWQqLaDFZtEBuCcIkTFURAFsAnnXqIAvK0TcYALwLMAjAAYANO01mACIAZTcCRB9EWwJoIJFDNAxsTRJrWwMgA

printLabel(myObj);Try

The	interface	LabeledValue	is	a	name	we	can	now	use	to	describe	the
requirement	in	the	previous	example.	It	still	represents	having	a	single	property
called	label	that	is	of	type	string.	Notice	we	didn't	have	to	explicitly	say	that
the	object	we	pass	to	printLabel	implements	this	interface	like	we	might	have	to
in	other	languages.	Here,	it's	only	the	shape	that	matters.	If	the	object	we	pass	to
the	function	meets	the	requirements	listed,	then	it's	allowed.

It's	worth	pointing	out	that	the	type	checker	does	not	require	that	these	properties
come	in	any	sort	of	order,	only	that	the	properties	the	interface	requires	are
present	and	have	the	required	type.

Optional	Properties

Not	all	properties	of	an	interface	may	be	required.	Some	exist	under	certain
conditions	or	may	not	be	there	at	all.	These	optional	properties	are	popular	when
creating	patterns	like	"option	bags"	where	you	pass	an	object	to	a	function	that
only	has	a	couple	of	properties	filled	in.

Here's	an	example	of	this	pattern:

interface	SquareConfig	{

		color?:	string;

		width?:	number;

}

function	createSquare(config:	SquareConfig):	{	color:	string;	area:	number	}	{

		let	newSquare	=	{	color:	"white",	area:	100	};

		if	(config.color)	{

				newSquare.color	=	config.color;

		}

		if	(config.width)	{

				newSquare.area	=	config.width	*	config.width;

		}

		return	newSquare;

}

let	mySquare	=	createSquare({	color:	"black"	});Try

https://www.typescriptlang.org/play/#code/JYOwLgpgTgZghgYwgAgDJwEYQDYQCYBqc2ArigN4BQyy2mOAXMgM5hSgDmA3JQL6WUYJEAjDAA9iGQAHduHRZsACjqL8AeQwArJgpz4ipCAEpkVGgknNxuAHTZxHFfVx5NW+y+M9+lXGGQAWwBPd2QAXjMWYAAvCCYARgAGABpaFyYAIgBlWJRk5HcIUUzkXh5ZUDA9ZRD3byA
https://www.typescriptlang.org/play/#code/JYOwLgpgTgZghgYwgAgMoEcCucoQMID2IMwA5sgN4BQyyCBANgVAPwBcyAzmFKKQNw1kAd2AATMAAt2yEJgC2AI2iCAvlSoxMIBGGBE6uOJAzZcACnrEyHUznxESpAJQcKdRsw7deIAcns4DjklaGRVSiEGCDBZCGE7XGQAXkoPJigOACJhSWBILIAaAKMOAEYABgrwwVpgGGRLRzIAOnoM50jaWhB4xIg2zygUj2tSQYza8KF6xqsnFtEJSU7qbriErHsWwJH51qWpZAAqUYXDySn1WlwwTCgQDf61DWjY+QBPfr2jEy2LdztLzILKKBiIADWWXCzn4QA

Interfaces	with	optional	properties	are	written	similar	to	other	interfaces,	with
each	optional	property	denoted	by	a	?	at	the	end	of	the	property	name	in	the
declaration.

The	advantage	of	optional	properties	is	that	you	can	describe	these	possibly
available	properties	while	still	also	preventing	use	of	properties	that	are	not	part
of	the	interface.	For	example,	had	we	mistyped	the	name	of	the	color	property	in
createSquare,	we	would	get	an	error	message	letting	us	know:

interface	SquareConfig	{

		color?:	string;

		width?:	number;

}

function	createSquare(config:	SquareConfig):	{	color:	string;	area:	number	}	{

		let	newSquare	=	{	color:	"white",	area:	100	};

		if	(config.clor)	{

Property	'clor'	does	not	exist	on	type	'SquareConfig'.	Did	you	mean	'color'?

				//	Error:	Property	'clor'	does	not	exist	on	type	'SquareConfig'

				newSquare.color	=	config.clor;

Property	'clor'	does	not	exist	on	type	'SquareConfig'.	Did	you	mean	'color'?

		}

		if	(config.width)	{

				newSquare.area	=	config.width	*	config.width;

		}

		return	newSquare;

}

let	mySquare	=	createSquare({	color:	"black"	});Try

Readonly	properties

Some	properties	should	only	be	modifiable	when	an	object	is	first	created.	You
can	specify	this	by	putting	readonly	before	the	name	of	the	property:

interface	Point	{

		readonly	x:	number;

		readonly	y:	number;

}Try

You	can	construct	a	Point	by	assigning	an	object	literal.	After	the	assignment,	x

https://www.typescriptlang.org/play/#code/PTAEAEFMCdoe2gZwFygEwFYMEYBQBLAOwBcYAzAQwGNJQBlARwFcLpIBhOQs-Ac1ADeuUKCpwANggD8qRMWhFeAbmGgA7vgAmxABYzQhJgFsARjBUBfXLjJNCVYvi6i2FUoxZsAFGO59UHqwcXDy8AJSoAqISCLLyikqgQRSohqYwoBaCquKQxAaQaoFsoAC8gtGS0KgARGo6+KQ1ADRJrqjYAAydmSoi+GSgPiF8AHRUVWHZIiIgoACisLGgAArwAA4wxACeoADkEwh7oJpwkIgGcPmQAB74cqDOO5v7xcF+vHuqIoSFb+MxaBlaIfcZVPqZVQDIa+UKjDTaHRTIQzApFZhBUbJYGwsYI3SgABUILh+J0EKsIjYxCY0EIaLelmsuXyRm2bxxrncGO8UTEVVqJnE1AA1jVMmElEA
https://www.typescriptlang.org/play/#code/JYOwLgpgTgZghgYwgAgAoHtRmQbwFDLJQRwAm6IANgJ7IAeAXMiAK4C2ARtANwFEnkqtak1aceeAL5A

and	y	can't	be	changed.

let	p1:	Point	=	{	x:	10,	y:	20	};

p1.x	=	5;	//	error!

Cannot	assign	to	'x'	because	it	is	a	read-only	property.

Try

TypeScript	comes	with	a	ReadonlyArray<T>	type	that	is	the	same	as	Array<T>
with	all	mutating	methods	removed,	so	you	can	make	sure	you	don't	change	your
arrays	after	creation:

let	a:	number[]	=	[1,	2,	3,	4];

let	ro:	ReadonlyArray<number>	=	a;

ro[0]	=	12;	//	error!

Index	signature	in	type	'readonly	number[]'	only	permits	reading.

ro.push(5);	//	error!

Property	'push'	does	not	exist	on	type	'readonly	number[]'.

ro.length	=	100;	//	error!

Cannot	assign	to	'length'	because	it	is	a	read-only	property.

a	=	ro;	//	error!

The	type	'readonly	number[]'	is	'readonly'	and	cannot	be	assigned	to	the	mutable	type	'number[]'.

Try

On	the	last	line	of	the	snippet	you	can	see	that	even	assigning	the	entire
ReadonlyArray	back	to	a	normal	array	is	illegal.	You	can	still	override	it	with	a
type	assertion,	though:

let	a:	number[]	=	[1,	2,	3,	4];

let	ro:	ReadonlyArray<number>	=	a;

a	=	ro	as	number[];Try

readonly	vs	const
The	easiest	way	to	remember	whether	to	use	readonly	or	const	is	to	ask	whether
you're	using	it	on	a	variable	or	a	property.	Variables	use	const	whereas
properties	use	readonly.

https://www.typescriptlang.org/play/#code/PTAEAEFMCdoe2gZwFygEwFYAsAGAUAJYB2ALjAGYCGAxpKAApzEmgDeeoo0klAJnEQA2AT1AAPVEQCuAWwBGMANwcuPfkNHDJshdGUBfPCFABaM9SkkzJvIMgsADgEZUjZqAC8bcaic4ANKBa6Dig+srOAHRinqAYiqDGMPDQAIRAA
https://www.typescriptlang.org/play/#code/PTAEAEFMCdoe2gZwFygEwFYAsb0GY8BOdbABlCwEZSsAoAG0gBdQBDVAOwFcBbAIxgBtALqgAvKEGUANOll5ZWYQG4GzUPFQAlSKwAmcDvQCeAQVitjAHm78YAPnFtVteINKiJlNMtAhQMPDQAISucAB0AA5ciAAWABQYAJS+-oEIofDhjBwA5kyxTtSkqWDpIbSsTvClAbAZQA
https://www.typescriptlang.org/play/#code/DYUwLgBAhgXBB2BXAtgIxAJwNoF0IF4IsBGAGggCZyBmcgFhwG4AoUSDAezgCUQoATDvGABPAIIYMUEQB4kaTAD4C0FsygrO0AM4IU6bEyA

Excess	Property	Checks

In	our	first	example	using	interfaces,	TypeScript	lets	us	pass	{	size:	number;
label:	string;	}	to	something	that	only	expected	a	{	label:	string;	}.	We
also	just	learned	about	optional	properties,	and	how	they're	useful	when
describing	so-called	"option	bags".

However,	combining	the	two	naively	would	allow	an	error	to	sneak	in.	For
example,	taking	our	last	example	using	createSquare:

interface	SquareConfig	{

		color?:	string;

		width?:	number;

}

function	createSquare(config:	SquareConfig):	{	color:	string;	area:	number	}	{

		return	{	color:	config.color	||	"red",	area:	config.width	||	20	};

}

let	mySquare	=	createSquare({	colour:	"red",	width:	100	});

Argument	of	type	'{	colour:	string;	width:	number;	}'	is	not	assignable	to	parameter	of	type	'SquareConfig'.

		Object	literal	may	only	specify	known	properties,	but	'colour'	does	not	exist	in	type	'SquareConfig'.	Did	you	mean	to	write	'color'?

Try

Notice	the	given	argument	to	createSquare	is	spelled	colour	instead	of	color.	In
plain	JavaScript,	this	sort	of	thing	fails	silently.

You	could	argue	that	this	program	is	correctly	typed,	since	the	width	properties
are	compatible,	there's	no	color	property	present,	and	the	extra	colour	property
is	insignificant.

However,	TypeScript	takes	the	stance	that	there's	probably	a	bug	in	this	code.
Object	literals	get	special	treatment	and	undergo	excess	property	checking	when
assigning	them	to	other	variables,	or	passing	them	as	arguments.	If	an	object
literal	has	any	properties	that	the	"target	type"	doesn't	have,	you'll	get	an	error:

let	mySquare	=	createSquare({	colour:	"red",	width:	100	});

Argument	of	type	'{	colour:	string;	width:	number;	}'	is	not	assignable	to	parameter	of	type	'SquareConfig'.

		Object	literal	may	only	specify	known	properties,	but	'colour'	does	not	exist	in	type	'SquareConfig'.	Did	you	mean	to	write	'color'?

Try

Getting	around	these	checks	is	actually	really	simple.	The	easiest	method	is	to
just	use	a	type	assertion:

https://www.typescriptlang.org/play/#code/PTAEAEFMCdoe2gZwFygEwGYAsBWdB2DATgCgBLAOwBcYAzAQwGNJQBlARwFd7pIBhOBVpkA5qADeJUKEZwANggD8qRFWiURAbimgA7mQAmVABbLQFTgFsARjG0BfEiVqcKjKmUEze9Gh268ABSyQqKo-jz8gsIiAJSo4jLyCCpqGpqgkfSoFjYwoPYSOrxUnNAUEkkK0KghMQB0stWgAD4toABEvAYdADSZPrXRovX6Rsat7WgADAUOTnKQVKCWAJ4RvKAAvN6QvpAbkIGJTXBlqF2QPf1jJqgAjNOz9rGaQA
https://www.typescriptlang.org/play/#code/PTAEAEFMCdoe2gZwFygEwGYAsBWdB2DATgCgBLAOwBcYAzAQwGNJQBlARwFd7pIBhOBVpkA5qADeJUKEZwANggD8qRFWiURAbimgA7mQAmVABbLQFTgFsARjG0BfEiVqcKjKmUEze9Gh268ABSyQqKo-jz8gsIiAJSo4jLyCCpqGpqgkfSoFjYwoPYSOrxUnNAUEkkK0KghMQB0stWgAD4toABEvAYdADSZPrXRovX6Rsat7WgADAUOJCCgALQrjJxUK0skcpBUoJYAnhG8oAC83pC+kMeQgYlNcGWoXZA9-WMmqACM07P2sZogA

just	use	a	type	assertion:

let	mySquare	=	createSquare({	width:	100,	opacity:	0.5	}	as	SquareConfig

However,	a	better	approach	might	be	to	add	a	string	index	signature	if	you're
sure	that	the	object	can	have	some	extra	properties	that	are	used	in	some	special
way.	If	SquareConfig	can	have	color	and	width	properties	with	the	above	types,
but	could	also	have	any	number	of	other	properties,	then	we	could	define	it	like
so:

interface	SquareConfig	{

		color?:	string;

		width?:	number;

		[propName:	string]:	any;

}Try

We'll	discuss	index	signatures	in	a	bit,	but	here	we're	saying	a	SquareConfig	can
have	any	number	of	properties,	and	as	long	as	they	aren't	color	or	width,	their
types	don't	matter.

One	final	way	to	get	around	these	checks,	which	might	be	a	bit	surprising,	is	to
assign	the	object	to	another	variable:	Since	squareOptions	won't	undergo	excess
property	checks,	the	compiler	won't	give	you	an	error.

let	squareOptions	=	{	colour:	"red",	width:	100	};

let	mySquare	=	createSquare(squareOptions);Try

The	above	workaround	will	work	as	long	as	you	have	a	common	property
between	squareOptions	and	SquareConfig.	In	this	example,	it	was	the	property
width.	It	will	however,	fail	if	the	variable	does	not	have	any	common	object
property.	For	example:

let	squareOptions	=	{	colour:	"red"	};

let	mySquare	=	createSquare(squareOptions);Try

Keep	in	mind	that	for	simple	code	like	above,	you	probably	shouldn't	be	trying
to	"get	around"	these	checks.	For	more	complex	object	literals	that	have	methods
and	hold	state,	you	might	need	to	keep	these	techniques	in	mind,	but	a	majority
of	excess	property	errors	are	actually	bugs.	That	means	if	you're	running	into
excess	property	checking	problems	for	something	like	option	bags,	you	might
need	to	revise	some	of	your	type	declarations.	In	this	instance,	if	it's	okay	to	pass

https://www.typescriptlang.org/play/#code/JYOwLgpgTgZghgYwgAgMoEcCucoQMID2IMwA5sgN4BQyyCBANgVAPwBcyAzmFKKQNw1kAd2AATMAAt2yEJgC2AI2iDaAbQAOUAhoByceRA7deIUgF0OcEAE9BAXyA
https://www.typescriptlang.org/play/#code/JYOwLgpgTgZghgYwgAgMoEcCucoQMID2IMwA5sgN4BQyyCBANgVAPwBcyAzmFKKQNw1kAd2AATMAAt2yEJgC2AI2iDaAbQAOUAhoByceRA7deIUgF0OcEAE9BAXypUYmEAjDAidXHEgZsuAAU9MRkHP44+EQkpACUHBR0jMzGPHz8yJFwHHJK0Mj2lEK4YJhQIJRJTFAcITEAdPTVyAA+LcgARLhiHQA0mT610WT1ohKSre0ATAAMBQ5UAPSLyAC06wiYYOurVAwQYFxYkQDyGh5EnMgAvJVNBGUcXRA9-WNSHACMM3P2gvuHeQ2CK4G7eCC+CAgiCBTjHXBnC4gTixfhAA
https://www.typescriptlang.org/play/#code/JYOwLgpgTgZghgYwgAgMoEcCucoQMID2IMwA5sgN4BQyyCBANgVAPwBcyAzmFKKQNw1kAd2AATMAAt2yEJgC2AI2iDaAbQAOUAhoByceRA7deIUgF0OcEAE9BAXypUYmEAjDAidXHEgZsuAAU9MRkHP44+EQkpACUHBR0jMzGPHz8yJFwHHJK0Mj2lEK4YJhQIJRJTFAcITEAdPTVyAA+LcgARLhiHQA0mT610WT1ohKSre0ATAAMBQ5UAPSLyAC06wiYYOurVAwQYFxYkQDyGh5EnMgAvJVNBGUcXRA983sHyPI2Ebg33hC+CA-CCBTjHXBnC4gTixfhAA

an	object	with	both	a	color	or	colour	property	to	createSquare,	you	should	fix
up	the	definition	of	SquareConfig	to	reflect	that.

Function	Types

Interfaces	are	capable	of	describing	the	wide	range	of	shapes	that	JavaScript
objects	can	take.	In	addition	to	describing	an	object	with	properties,	interfaces
are	also	capable	of	describing	function	types.

To	describe	a	function	type	with	an	interface,	we	give	the	interface	a	call
signature.	This	is	like	a	function	declaration	with	only	the	parameter	list	and
return	type	given.	Each	parameter	in	the	parameter	list	requires	both	name	and
type.

interface	SearchFunc	{

		(source:	string,	subString:	string):	boolean;

}Try

Once	defined,	we	can	use	this	function	type	interface	like	we	would	other
interfaces.	Here,	we	show	how	you	can	create	a	variable	of	a	function	type	and
assign	it	a	function	value	of	the	same	type.

let	mySearch:	SearchFunc;

mySearch	=	function	(source:	string,	subString:	string)	{

		let	result	=	source.search(subString);

		return	result	>	-1;

};Try

For	function	types	to	correctly	type	check,	the	names	of	the	parameters	do	not
need	to	match.	We	could	have,	for	example,	written	the	above	example	like	this:

let	mySearch:	SearchFunc;

mySearch	=	function	(src:	string,	sub:	string):	boolean	{

		let	result	=	src.search(sub);

		return	result	>	-1;

};Try

Function	parameters	are	checked	one	at	a	time,	with	the	type	in	each

https://www.typescriptlang.org/play/#code/PTAEAEFMCdoe2gZwFygEwGYAsBWdB2DATgCgBLAOwBcYAzAQwGNJQBlARwFd7pIBhOBVpkA5qADeJUKEZwANggD8qRFWiURAbimgA7mQAmVABbLQFTgFsARjG0BfEiVqcKjKmUEze9Gh268ABSyQqKo-jz8gsIiAJSo4jLyCCpqGpqgkfSoFjYwoPYSOrxUnNAUEkkK0KghMQB0stWgAD4toABEvAYdADSZPrXRovX6Rsat7WgADAUOJCCgALQrjJxUK0skcpBUoJYAnhG8oAC83pC+kMeQgYljJqgAjNPT-XAADkxkVAeo0-U8IV6Ig2FxIgJQnFNEA
https://www.typescriptlang.org/play/#code/JYOwLgpgTgZghgYwgAgMoTlBALAYgVxAWQG8AoZZACgGcB7fLCALmRrClAHMAaN-AEaoO3Vu04guASlYC6dADYYQAbjIBfIA
https://www.typescriptlang.org/play/#code/JYOwLgpgTgZghgYwgAgMoTlBALAYgVxAWQG8AoZZACgGcB7fLCALmRrClAHMAaN-AEaoO3Vu04guASlYC6dADYYQAbjIBfMgHotyALQGE+MAb1klYZAFsAnukw5W9rHkII1ZW85zIAvMhg3MGA6EGp6RiQxEUk+GkFhCS5opKlSCmQLZCgIeIVLfwimADoaDBdaBJjpNUocsEYwnLzLAD59AEY1dRUgA
https://www.typescriptlang.org/play/#code/JYOwLgpgTgZghgYwgAgMoTlBALAYgVxAWQG8AoZZACgGcB7fLCALmRrClAHMAaN-AEaoO3Vu04guASlYC6dADYYQAbjIBfMgHotyALQGE+MAb1klYZAFsAnukw5W9rHkII1ZW85zIAvMhg3MGA6EGoaLDERST4aQSiJaVl5JTgw8koLZCgIOIVLfwiEADoaDBdaQSk1ShywRjCcvMsAPn0ARjV1FSA

corresponding	parameter	position	checked	against	each	other.	If	you	do	not	want
to	specify	types	at	all,	TypeScript's	contextual	typing	can	infer	the	argument
types	since	the	function	value	is	assigned	directly	to	a	variable	of	type
SearchFunc.	Here,	also,	the	return	type	of	our	function	expression	is	implied	by
the	values	it	returns	(here	false	and	true).

let	mySearch:	SearchFunc;

mySearch	=	function	(src,	sub)	{

		let	result	=	src.search(sub);

		return	result	>	-1;

};Try

Had	the	function	expression	returned	numbers	or	strings,	the	type	checker	would
have	made	an	error	that	indicates	return	type	doesn't	match	the	return	type
described	in	the	SearchFunc	interface.

let	mySearch:	SearchFunc;

mySearch	=	function	(src,	sub)	{

Type	'(src:	string,	sub:	string)	=>	string'	is	not	assignable	to	type	'SearchFunc'.

		Type	'string'	is	not	assignable	to	type	'boolean'.

		let	result	=	src.search(sub);

		return	"string";

};Try

Indexable	Types

Similarly	to	how	we	can	use	interfaces	to	describe	function	types,	we	can	also
describe	types	that	we	can	"index	into"	like	a[10],	or	ageMap["daniel"].
Indexable	types	have	an	index	signature	that	describes	the	types	we	can	use	to
index	into	the	object,	along	with	the	corresponding	return	types	when	indexing.
Let's	take	an	example:

interface	StringArray	{

		[index:	number]:	string;

}

let	myArray:	StringArray;

myArray	=	["Bob",	"Fred"];

https://www.typescriptlang.org/play/#code/JYOwLgpgTgZghgYwgAgMoTlBALAYgVxAWQG8AoZZACgGcB7fLCALmRrClAHMAaN-AEaoO3Vu04guASlYC6dADYYQAbjIBfMgHotyALQGE+MAb1klYZAFsAnukw5W9rHkII1ZW85zIAvMhg3MGA6EGoaLD4aQSlSCmQLZCgIaIVLfwiEADoaDBdaGLVKZLBGMOTUywA+fQBGNXUVIA
https://www.typescriptlang.org/play/#code/PTAEAEFMCdoe2gZwFygEwGY1oFAEsA7AFxgDMBDAY0lAGVJzpKALAMQFcDLQBvHUUAApEcdk0ipERaIQDmAGlCJ2AI1rS5kjQVkBKVCrhwANgwIBuHAF8cIUAFpHldkUf2cpoqAC2AT3qMLKgBTGyclJY4fiEsoAC8oKThRHhwBEKITIrKKrq8-KCeoNCQysZeCZmUAHSIDKHCqrqWAiVEYukARFIyOp2WVuZAA

let	myStr:	string	=	myArray[0];Try

Above,	we	have	a	StringArray	interface	that	has	an	index	signature.	This	index
signature	states	that	when	a	StringArray	is	indexed	with	a	number,	it	will	return	a
string.

There	are	two	types	of	supported	index	signatures:	string	and	number.	It	is
possible	to	support	both	types	of	indexers,	but	the	type	returned	from	a	numeric
indexer	must	be	a	subtype	of	the	type	returned	from	the	string	indexer.	This	is
because	when	indexing	with	a	number,	JavaScript	will	actually	convert	that	to	a
string	before	indexing	into	an	object.	That	means	that	indexing	with	100	(a
number)	is	the	same	thing	as	indexing	with	"100"	(a	string),	so	the	two	need	to
be	consistent.

interface	Animal	{

		name:	string;

}

interface	Dog	extends	Animal	{

		breed:	string;

}

//	Error:	indexing	with	a	numeric	string	might	get	you	a	completely	separate	type	of	Animal!

interface	NotOkay	{

		[x:	number]:	Animal;

Numeric	index	type	'Animal'	is	not	assignable	to	string	index	type	'Dog'.

		[x:	string]:	Dog;

}Try

While	string	index	signatures	are	a	powerful	way	to	describe	the	"dictionary"
pattern,	they	also	enforce	that	all	properties	match	their	return	type.	This	is
because	a	string	index	declares	that	obj.property	is	also	available	as
obj["property"].	In	the	following	example,	name's	type	does	not	match	the	string
index's	type,	and	the	type	checker	gives	an	error:

interface	NumberDictionary	{

		[index:	string]:	number;

		length:	number;	//	ok,	length	is	a	number

		name:	string;	//	error,	the	type	of	'name'	is	not	a	subtype	of	the	indexer

Property	'name'	of	type	'string'	is	not	assignable	to	string	index	type	'number'.

}Try

However,	properties	of	different	types	are	acceptable	if	the	index	signature	is	a

https://www.typescriptlang.org/play/#code/JYOwLgpgTgZghgYwgAgMpiqA5gQSlOAT2QG8AoZZAbVABMIAPALmRAFcBbAI2gF0WAzhmwBuMgF8yZADYQwyDoTwFCLdJhC58RMYuVFkAXmoAiAEIB7LiYA0yEwDEoEWid5iZchYXWDhmo299QioABncgA
https://www.typescriptlang.org/play/#code/PTAEAEFMCdoe2gZwFygEwBYCMBmAUCBIgC7QCWAxsQArwAOMxAngJIB2ZxZAhgDZkAvblzhtUAMz6JIeMm2IxJFSKACCHALZ9QAbzyhQbbhsioS5NgHMA3HgC+eWfMXdloACJxLoSAA8FbAAmiGqa2noGAEbQkJCBZqRyNvaOhACisAiocoF+SaAA7pwAFqDchgCuJuQUoOb5GmSWxcSglpCtTHAVZaAUcBp0vB2QvEx1kHTc0MIqzAygcOKhZFq8AIROCtBKKgBycMQA8gDW3OMRoADavqhsVZEwALqo6qt8tgY3CRaWLx5eWx2IA
https://www.typescriptlang.org/play/#code/PTAEAEFMCdoe2gZwFygEwBYCMWBQBLAOwBcYAzAQwGNJQA5AVwFsAjGAEXyuPzkIugBPUAG9coUAG0iAE0gAPVImLQiAcwC6qQszbQA3ONAAbSITXEAFtt0x9oEKDgBrADQmzFy6HyJQFUB1WGCN+JkglFXV7Rxh4aHcrWmJBAAdaODJQAHIwyGyfP0I4Yn9QRAYWFPSnLKSfQjl5EIBfIA

However,	properties	of	different	types	are	acceptable	if	the	index	signature	is	a
union	of	the	property	types:

interface	NumberOrStringDictionary	{

		[index:	string]:	number	|	string;

		length:	number;	//	ok,	length	is	a	number

		name:	string;	//	ok,	name	is	a	string

}Try

Finally,	you	can	make	index	signatures	readonly	in	order	to	prevent	assignment
to	their	indices:

interface	ReadonlyStringArray	{

		readonly	[index:	number]:	string;

}

let	myArray:	ReadonlyStringArray	=	["Alice",	"Bob"];

myArray[2]	=	"Mallory";	//	error!

Index	signature	in	type	'ReadonlyStringArray'	only	permits	reading.

Try

You	can't	set	myArray[2]	because	the	index	signature	is	readonly.

Class	Types

Implementing	an	interface
One	of	the	most	common	uses	of	interfaces	in	languages	like	C#	and	Java,	that
of	explicitly	enforcing	that	a	class	meets	a	particular	contract,	is	also	possible	in
TypeScript.

interface	ClockInterface	{

		currentTime:	Date;

}

class	Clock	implements	ClockInterface	{

		currentTime:	Date	=	new	Date();

		constructor(h:	number,	m:	number)	{}

}Try

https://www.typescriptlang.org/play/#code/JYOwLgpgTgZghgYwgAgHIFcC2AjaB5KAZTClAHMARYBMYAexDigE9kBvAKGWQG1QATCAA8AXMgDOJcgF0xILLijIAPhKkgyAbi7IANhA1gAFnIXRNyAPSXkdANYAaPQbLHkwccjjJ5OaDsZMCDFJUg0La1tHHzgg909vUPIOAF8gA
https://www.typescriptlang.org/play/#code/PTAEAEFMCdoe2gZwFygEwFYAsaBQBLAOwBcYAzAQwGNJQAlSCgEzkIBsBPAZWOiIHMAgrAodQAb1yhQ0Ri3ZiA2kSaQAHqkIBXALYAjGAF1UiXgIDcuAL65cbSMVA6Ow6KNQNmrTjz6EhImIAvKCKAESCbPg0YQA0oGEAQnB6YYaWzq6iimiGoCFhALIUbGwIHGHmoCCgMPDQAIRAA
https://www.typescriptlang.org/play/#code/JYOwLgpgTgZghgYwgAgMIBsD2CDWBJcaeJZAbwChlkEBXKKCcAFWAFsIAuZAETkgG5yAX3LkE6OAGdJaLLmRsADugjtwMjNnyFYiFBSq16jMC3ZdekZAF5kICAHcefCAAoAlIMOYQksFBoEMEwoVwALLhAaVgAjaAAaZFZI6LiodzIRISA

You	can	also	describe	methods	in	an	interface	that	are	implemented	in	the	class,
as	we	do	with	setTime	in	the	below	example:

interface	ClockInterface	{

		currentTime:	Date;

		setTime(d:	Date):	void;

}

class	Clock	implements	ClockInterface	{

		currentTime:	Date	=	new	Date();

		setTime(d:	Date)	{

				this.currentTime	=	d;

		}

		constructor(h:	number,	m:	number)	{}

}Try

Interfaces	describe	the	public	side	of	the	class,	rather	than	both	the	public	and
private	side.	This	prohibits	you	from	using	them	to	check	that	a	class	also	has
particular	types	for	the	private	side	of	the	class	instance.

Difference	between	the	static	and	instance	sides	of	classes
When	working	with	classes	and	interfaces,	it	helps	to	keep	in	mind	that	a	class
has	two	types:	the	type	of	the	static	side	and	the	type	of	the	instance	side.	You
may	notice	that	if	you	create	an	interface	with	a	construct	signature	and	try	to
create	a	class	that	implements	this	interface	you	get	an	error:

interface	ClockConstructor	{

		new	(hour:	number,	minute:	number);

}

class	Clock	implements	ClockConstructor	{

Class	'Clock'	incorrectly	implements	interface	'ClockConstructor'.

		Type	'Clock'	provides	no	match	for	the	signature	'new	(hour:	number,	minute:	number):	any'.

		currentTime:	Date;

		constructor(h:	number,	m:	number)	{}

}Try

This	is	because	when	a	class	implements	an	interface,	only	the	instance	side	of
the	class	is	checked.	Since	the	constructor	sits	in	the	static	side,	it	is	not	included
in	this	check.

https://www.typescriptlang.org/play/#code/PTAEAEGcBcCcEsDG0AKsD2AHApraBPASQDt5p4BDAG3gC8Lz1iAuUAM2smwCh5jpcHRNlABhKukQBrEgNhCRAb26hQiAK6xY2fgBV4AW2ysAIg2wBuFaC7R9RgBQATU+YCUrAG7p4TqwF9ubkQqCkhIMQlpUENMKmwjfgjxSRl+QQphUGVVDS0dO0NjUDMBUABeUGJsAHcS8wc3K1Vbe2xnVwE3bOtVaAALeEgAOjztPSKK0D9rQNymGFh1ZHRYB37WYnUDACNcABpQA03tvdhuxUD-IA
https://www.typescriptlang.org/play/#code/PTAEAEFMCdoe2gZwFygOwAYCMBmUAmAFnwwIFYA2QgKBAkQBdoBLAYwYAV4AHGBgTwCSAO2YNmAQwA2zAF4TxcYagBm0xJFphwwuIIC23GazEBBYf1XrNzYQxhrWkUAGEpcVgGsXSxtACu7AigAN7UoKDCkADuoAAUABZw-tCowv76AEYwADSg+rb+9mkZ2dAAlADc1AC+1NSsUhKIiK7uXqDMhlKQ+pB2rW4e3r5MgQzBYRGsKdD9DAAqXZCoACIKkNXTowFB0IklWbn5h2XloXU1QA

Instead,	you	would	need	to	work	with	the	static	side	of	the	class	directly.	In	this
example,	we	define	two	interfaces,	ClockConstructor	for	the	constructor	and
ClockInterface	for	the	instance	methods.	Then,	for	convenience,	we	define	a
constructor	function	createClock	that	creates	instances	of	the	type	that	is	passed
to	it:

interface	ClockConstructor	{

		new	(hour:	number,	minute:	number):	ClockInterface;

}

interface	ClockInterface	{

		tick():	void;

}

function	createClock(

		ctor:	ClockConstructor,

		hour:	number,

		minute:	number

):	ClockInterface	{

		return	new	ctor(hour,	minute);

}

class	DigitalClock	implements	ClockInterface	{

		constructor(h:	number,	m:	number)	{}

		tick()	{

				console.log("beep	beep");

		}

}

class	AnalogClock	implements	ClockInterface	{

		constructor(h:	number,	m:	number)	{}

		tick()	{

				console.log("tick	tock");

		}

}

let	digital	=	createClock(DigitalClock,	12,	17);

let	analog	=	createClock(AnalogClock,	7,	32);Try

Because	createClock's	first	parameter	is	of	type	ClockConstructor,	in
createClock(AnalogClock,	7,	32),	it	checks	that	AnalogClock	has	the	correct
constructor	signature.

Another	simple	way	is	to	use	class	expressions:

interface	ClockConstructor	{

https://www.typescriptlang.org/play/#code/JYOwLgpgTgZghgYwgAgMIBsD2CDWrMgDOYUArgmJlMgN4BQyyIEA7sgBQAWmpUAXE1IBbAEbQANMiGhSkASGFioASgEZsOAJLho8JAG46AXzp1QkWIhTrc2i3pT1GYYLnarkAN0zAAJoZM6GFIQCmACZAQoCDhIGxx2BkjKfjQsXHwiEnIU8STuXnlFCSTpBTlBUWg6D3i7XStaJOiwXhAmVmSqLh4oSTLZCGUA0wR0OEJCZAARYABzYDA4dHjkYCEAB3QIIQhwKbqdSyQmxgQCYjIKbs4iqr6pO6VlWhNnVwSXp0ZIi8xtgB0WDm7AARGIIBtkBCNqDhkkTIExhMpgBBEDLTBzVbrLY7PZgA7pLRHBynX5ZK4pLhPCSPSrPV5JFxuL5JM5-QHAsEsnDISi4OGGRiI0zbMDIXzzRbLZAAXki0ViEHi7FmCyWK2JkgAjAAmXUAdnh4uQcAxwPlipicWJ7HRmOx2uQhskAGY9cMgA

		new	(hour:	number,	minute:	number);

}

interface	ClockInterface	{

		tick();

}

const	Clock:	ClockConstructor	=	class	Clock	implements	ClockInterface	{

		constructor(h:	number,	m:	number)	{}

		tick()	{

				console.log("beep	beep");

		}

};Try

Extending	Interfaces

Like	classes,	interfaces	can	extend	each	other.	This	allows	you	to	copy	the
members	of	one	interface	into	another,	which	gives	you	more	flexibility	in	how
you	separate	your	interfaces	into	reusable	components.

interface	Shape	{

		color:	string;

}

interface	Square	extends	Shape	{

		sideLength:	number;

}

let	square	=	{}	as	Square;

square.color	=	"blue";

square.sideLength	=	10;Try

An	interface	can	extend	multiple	interfaces,	creating	a	combination	of	all	of	the
interfaces.

interface	Shape	{

		color:	string;

}

interface	PenStroke	{

		penWidth:	number;

}

interface	Square	extends	Shape,	PenStroke	{

https://www.typescriptlang.org/play/#code/PTAEAEGcBcCcEsDG0AKsD2AHApraBPASQDt5p4BDAG3gC8Lz1iAuUAM2smwCgQJj0hALaYaiMgEFi+VhyqRu8YtFwdE2UAGEq6RAGtNTGLACuydLFABvbqFDFsAd1AAKABboTsVsRNCARrgANKBCSiYqPn6BsACUANzcAL7cisqqFOpaOvokKrBqGjZ25PouCcmpiEbQ2bp6rNr1hsTGZtAWoAC8oIhUFJCQdfqg8CJU2ELYykNNuekFmUW2vTWm5rDuUQHBodsxsdYpJUh65dYrdtWt6BMAdDoA5i4ARIHYmKDvmC8VdilJeJAA
https://www.typescriptlang.org/play/#code/JYOwLgpgTgZghgYwgAgMoAs4AcUG8BQyyCA9gDYlQBcyAzmFKAOYDc+AvvvqJLIiqgCOAVzhQUEAB6QQAE1ppMOZASK1gsiABkIIJmHQ0QwgLYAjaG074yEMHRFiUAXhXtkcBUNHi2tR+IAdKQUUMiuAERmZMIQEX4BEIHqmjp6BuHIAIwADCxAA

		sideLength:	number;

}

let	square	=	{}	as	Square;

square.color	=	"blue";

square.sideLength	=	10;

square.penWidth	=	5.0;Try

Hybrid	Types

As	we	mentioned	earlier,	interfaces	can	describe	the	rich	types	present	in	real
world	JavaScript.	Because	of	JavaScript's	dynamic	and	flexible	nature,	you	may
occasionally	encounter	an	object	that	works	as	a	combination	of	some	of	the
types	described	above.

One	such	example	is	an	object	that	acts	as	both	a	function	and	an	object,	with
additional	properties:

interface	Counter	{

		(start:	number):	string;

		interval:	number;

		reset():	void;

}

function	getCounter():	Counter	{

		let	counter	=	function	(start:	number)	{}	as	Counter;

		counter.interval	=	123;

		counter.reset	=	function	()	{};

		return	counter;

}

let	c	=	getCounter();

c(10);

c.reset();

c.interval	=	5.0;Try

When	interacting	with	3rd-party	JavaScript,	you	may	need	to	use	patterns	like
the	above	to	fully	describe	the	shape	of	the	type.

Interfaces	Extending	Classes

https://www.typescriptlang.org/play/#code/JYOwLgpgTgZghgYwgAgMoAs4AcUG8BQyyCA9gDYlQBcyAzmFKAOYDc+AvvvqJLIigAUIIVAxIBrPIWQ4QAdWAATMOhogArgFsARtDadu4aPCRoAjurhQUEAB6QQi2mkw4ANMiEixk5ASK0ShAAMsJMKmpaulD6XGQQYHQWVigAvH7syHDOqMnWbLR5EAB0pBRQyOkARNpk6hBVBUXFgYohYSqVyACMAAxNltbFsgrK6F0ArMX9QA
https://www.typescriptlang.org/play/#code/JYOwLgpgTgZghgYwgAgMIHsCu5rIN4BQyyAFAM5hxRgBcyImAtgEbQCUdFUoA5gNxFkoSFABucADZ0GLaAOJQIZCGBIdko9MAAmAgL4ECMbAjDB0IZDxUZsItXVs4o+QRJXIEWZ8gC8yYxBTc0tySmppJlYoNnw9ZDgyNG8ReU8U6AA6YWhxCT9kAEYAJgBmNK87LMVlMALA4ItSWLw9NMUwTChLSud9Q3c6hALrMCd7NgEEEkKABkmCBEyalTUp7Oc8goBWTNm+IA

Interfaces	Extending	Classes

When	an	interface	type	extends	a	class	type	it	inherits	the	members	of	the	class
but	not	their	implementations.	It	is	as	if	the	interface	had	declared	all	of	the
members	of	the	class	without	providing	an	implementation.	Interfaces	inherit
even	the	private	and	protected	members	of	a	base	class.	This	means	that	when
you	create	an	interface	that	extends	a	class	with	private	or	protected	members,
that	interface	type	can	only	be	implemented	by	that	class	or	a	subclass	of	it.

This	is	useful	when	you	have	a	large	inheritance	hierarchy,	but	want	to	specify
that	your	code	works	with	only	subclasses	that	have	certain	properties.	The
subclasses	don't	have	to	be	related	besides	inheriting	from	the	base	class.	For
example:

class	Control	{

		private	state:	any;

}

interface	SelectableControl	extends	Control	{

		select():	void;

}

class	Button	extends	Control	implements	SelectableControl	{

		select()	{}

}

class	TextBox	extends	Control	{

		select()	{}

}

class	ImageControl	implements	SelectableControl	{

Class	'ImageControl'	incorrectly	implements	interface	'SelectableControl'.

		Types	have	separate	declarations	of	a	private	property	'state'.

		private	state:	any;

		select()	{}

}Try

In	the	above	example,	SelectableControl	contains	all	of	the	members	of
Control,	including	the	private	state	property.	Since	state	is	a	private	member	it
is	only	possible	for	descendants	of	Control	to	implement	SelectableControl.
This	is	because	only	descendants	of	Control	will	have	a	state	private	member
that	originates	in	the	same	declaration,	which	is	a	requirement	for	private
members	to	be	compatible.

https://www.typescriptlang.org/play/#code/PTAEAEFMCdoe2gZwFygEwGYAMX0BY1dMcAoAYwBsBDRRUAYTgDsAXeC0AbxNFAAdoASwBuVFpFCIWYyKipMAngG4SAXxIlBrGADMqZCQGVIFSGWkAjU41btQkAB7imAEzo22cDt16ITZlgAKAEpUYThBFxV1cmpaUAAhAFcWFmZ7J0hXd2ZPDkEAWz5TAqyWOmNTcyorSA87H0l-cxCudRjKGjoAFUcWBLgHDOc3BlyGniaqoOC2tQ1O+IBJAqoAczrxr1BC4shS1grmy2st70mBERlJaXE5RRVfY9bOdqA

Within	the	Control	class	it	is	possible	to	access	the	state	private	member
through	an	instance	of	SelectableControl.	Effectively,	a	SelectableControl	acts
like	a	Control	that	is	known	to	have	a	select	method.	The	Button	and	TextBox
classes	are	subtypes	of	SelectableControl	(because	they	both	inherit	from
Control	and	have	a	select	method).	The	ImageControl	class	has	it's	own	state
private	member	rather	than	extending	Control,	so	it	cannot	implement
SelectableControl.

Functions

Introduction

Functions	are	the	fundamental	building	block	of	any	application	in	JavaScript.
They're	how	you	build	up	layers	of	abstraction,	mimicking	classes,	information
hiding,	and	modules.	In	TypeScript,	while	there	are	classes,	namespaces,	and
modules,	functions	still	play	the	key	role	in	describing	how	to	do	things.
TypeScript	also	adds	some	new	capabilities	to	the	standard	JavaScript	functions
to	make	them	easier	to	work	with.

Functions

To	begin,	just	as	in	JavaScript,	TypeScript	functions	can	be	created	both	as	a
named	function	or	as	an	anonymous	function.	This	allows	you	to	choose	the
most	appropriate	approach	for	your	application,	whether	you're	building	a	list	of
functions	in	an	API	or	a	one-off	function	to	hand	off	to	another	function.

To	quickly	recap	what	these	two	approaches	look	like	in	JavaScript:

//	Named	function

function	add(x,	y)	{

		return	x	+	y;

}

//	Anonymous	function

let	myAdd	=	function(x,	y)	{

		return	x	+	y;

};

Just	as	in	JavaScript,	functions	can	refer	to	variables	outside	of	the	function
body.	When	they	do	so,	they're	said	to	capture	these	variables.	While
understanding	how	this	works	(and	the	trade-offs	when	using	this	technique)	is
outside	of	the	scope	of	this	article,	having	a	firm	understanding	how	this
mechanic	works	is	an	important	piece	of	working	with	JavaScript	and
TypeScript.

let	z	=	100;

function	addToZ(x,	y)	{

		return	x	+	y	+	z;

}

Function	Types

Typing	the	function

Let's	add	types	to	our	simple	examples	from	earlier:

function	add(x:	number,	y:	number):	number	{

		return	x	+	y;

}

let	myAdd	=	function(x:	number,	y:	number):	number	{

		return	x	+	y;

};

We	can	add	types	to	each	of	the	parameters	and	then	to	the	function	itself	to	add
a	return	type.	TypeScript	can	figure	the	return	type	out	by	looking	at	the	return
statements,	so	we	can	also	optionally	leave	this	off	in	many	cases.

Writing	the	function	type

Now	that	we've	typed	the	function,	let's	write	the	full	type	of	the	function	out	by
looking	at	each	piece	of	the	function	type.

let	myAdd:	(x:	number,	y:	number)	=>	number	=	function(

		x:	number,

		y:	number

):	number	{

		return	x	+	y;

};

A	function's	type	has	the	same	two	parts:	the	type	of	the	arguments	and	the
return	type.	When	writing	out	the	whole	function	type,	both	parts	are	required.

return	type.	When	writing	out	the	whole	function	type,	both	parts	are	required.
We	write	out	the	parameter	types	just	like	a	parameter	list,	giving	each
parameter	a	name	and	a	type.	This	name	is	just	to	help	with	readability.	We
could	have	instead	written:

let	myAdd:	(baseValue:	number,	increment:	number)	=>	number	=	function(

		x:	number,

		y:	number

):	number	{

		return	x	+	y;

};

As	long	as	the	parameter	types	line	up,	it's	considered	a	valid	type	for	the
function,	regardless	of	the	names	you	give	the	parameters	in	the	function	type.

The	second	part	is	the	return	type.	We	make	it	clear	which	is	the	return	type	by
using	a	fat	arrow	(=>)	between	the	parameters	and	the	return	type.	As	mentioned
before,	this	is	a	required	part	of	the	function	type,	so	if	the	function	doesn't
return	a	value,	you	would	use	void	instead	of	leaving	it	off.

Of	note,	only	the	parameters	and	the	return	type	make	up	the	function	type.
Captured	variables	are	not	reflected	in	the	type.	In	effect,	captured	variables	are
part	of	the	"hidden	state"	of	any	function	and	do	not	make	up	its	API.

Inferring	the	types

In	playing	with	the	example,	you	may	notice	that	the	TypeScript	compiler	can
figure	out	the	type	even	if	you	only	have	types	on	one	side	of	the	equation:

//	The	parameters	'x'	and	'y'	have	the	type	number

let	myAdd	=	function(x:	number,	y:	number):	number	{

		return	x	+	y;

};

//	myAdd	has	the	full	function	type

let	myAdd:	(baseValue:	number,	increment:	number)	=>	number	=	function(

		return	x	+	y;

};

This	is	called	"contextual	typing",	a	form	of	type	inference.	This	helps	cut	down
on	the	amount	of	effort	to	keep	your	program	typed.

on	the	amount	of	effort	to	keep	your	program	typed.

Optional	and	Default	Parameters

In	TypeScript,	every	parameter	is	assumed	to	be	required	by	the	function.	This
doesn't	mean	that	it	can't	be	given	null	or	undefined,	but	rather,	when	the
function	is	called,	the	compiler	will	check	that	the	user	has	provided	a	value	for
each	parameter.	The	compiler	also	assumes	that	these	parameters	are	the	only
parameters	that	will	be	passed	to	the	function.	In	short,	the	number	of	arguments
given	to	a	function	has	to	match	the	number	of	parameters	the	function	expects.

function	buildName(firstName:	string,	lastName:	string)	{

		return	firstName	+	"	"	+	lastName;

}

let	result1	=	buildName("Bob");	//	error,	too	few	parameters

let	result2	=	buildName("Bob",	"Adams",	"Sr.");	//	error,	too	many	parameters

let	result3	=	buildName("Bob",	"Adams");	//	ah,	just	right

In	JavaScript,	every	parameter	is	optional,	and	users	may	leave	them	off	as	they
see	fit.	When	they	do,	their	value	is	undefined.	We	can	get	this	functionality	in
TypeScript	by	adding	a	?	to	the	end	of	parameters	we	want	to	be	optional.	For
example,	let's	say	we	want	the	last	name	parameter	from	above	to	be	optional:

function	buildName(firstName:	string,	lastName?:	string)	{

		if	(lastName)	return	firstName	+	"	"	+	lastName;

		else	return	firstName;

}

let	result1	=	buildName("Bob");	//	works	correctly	now

let	result2	=	buildName("Bob",	"Adams",	"Sr.");	//	error,	too	many	parameters

let	result3	=	buildName("Bob",	"Adams");	//	ah,	just	right

Any	optional	parameters	must	follow	required	parameters.	Had	we	wanted	to
make	the	first	name	optional,	rather	than	the	last	name,	we	would	need	to	change
the	order	of	parameters	in	the	function,	putting	the	first	name	last	in	the	list.

In	TypeScript,	we	can	also	set	a	value	that	a	parameter	will	be	assigned	if	the
user	does	not	provide	one,	or	if	the	user	passes	undefined	in	its	place.	These	are
called	default-initialized	parameters.	Let's	take	the	previous	example	and	default
the	last	name	to	"Smith".

function	buildName(firstName:	string,	lastName	=	"Smith")	{

		return	firstName	+	"	"	+	lastName;

}

let	result1	=	buildName("Bob");	//	works	correctly	now,	returns	"Bob	Smith"

let	result2	=	buildName("Bob",	undefined);	//	still	works,	also	returns	"Bob	Smith"

let	result3	=	buildName("Bob",	"Adams",	"Sr.");	//	error,	too	many	parameters

let	result4	=	buildName("Bob",	"Adams");	//	ah,	just	right

Default-initialized	parameters	that	come	after	all	required	parameters	are	treated
as	optional,	and	just	like	optional	parameters,	can	be	omitted	when	calling	their
respective	function.	This	means	optional	parameters	and	trailing	default
parameters	will	share	commonality	in	their	types,	so	both

function	buildName(firstName:	string,	lastName?:	string)	{

		//	...

}

and

function	buildName(firstName:	string,	lastName	=	"Smith")	{

		//	...

}

share	the	same	type	(firstName:	string,	lastName?:	string)	=>	string.	The
default	value	of	lastName	disappears	in	the	type,	only	leaving	behind	the	fact	that
the	parameter	is	optional.

Unlike	plain	optional	parameters,	default-initialized	parameters	don't	need	to
occur	after	required	parameters.	If	a	default-initialized	parameter	comes	before	a
required	parameter,	users	need	to	explicitly	pass	undefined	to	get	the	default
initialized	value.	For	example,	we	could	write	our	last	example	with	only	a
default	initializer	on	firstName:

function	buildName(firstName	=	"Will",	lastName:	string)	{

		return	firstName	+	"	"	+	lastName;

}

let	result1	=	buildName("Bob");	//	error,	too	few	parameters

let	result2	=	buildName("Bob",	"Adams",	"Sr.");	//	error,	too	many	parameters

let	result3	=	buildName("Bob",	"Adams");	//	okay	and	returns	"Bob	Adams"

let	result4	=	buildName(undefined,	"Adams");	//	okay	and	returns	"Will	Adams"

Rest	Parameters

Rest	Parameters

Required,	optional,	and	default	parameters	all	have	one	thing	in	common:	they
talk	about	one	parameter	at	a	time.	Sometimes,	you	want	to	work	with	multiple
parameters	as	a	group,	or	you	may	not	know	how	many	parameters	a	function
will	ultimately	take.	In	JavaScript,	you	can	work	with	the	arguments	directly
using	the	arguments	variable	that	is	visible	inside	every	function	body.

In	TypeScript,	you	can	gather	these	arguments	together	into	a	variable:

function	buildName(firstName:	string,	...restOfName:	string[])	{

		return	firstName	+	"	"	+	restOfName.join("	");

}

//	employeeName	will	be	"Joseph	Samuel	Lucas	MacKinzie"

let	employeeName	=	buildName("Joseph",	"Samuel",	"Lucas",	"MacKinzie");

Rest	parameters	are	treated	as	a	boundless	number	of	optional	parameters.	When
passing	arguments	for	a	rest	parameter,	you	can	use	as	many	as	you	want;	you
can	even	pass	none.	The	compiler	will	build	an	array	of	the	arguments	passed	in
with	the	name	given	after	the	ellipsis	(...),	allowing	you	to	use	it	in	your
function.

The	ellipsis	is	also	used	in	the	type	of	the	function	with	rest	parameters:

function	buildName(firstName:	string,	...restOfName:	string[])	{

		return	firstName	+	"	"	+	restOfName.join("	");

}

let	buildNameFun:	(fname:	string,	...rest:	string[])	=>	string	=	buildName

this

Learning	how	to	use	this	in	JavaScript	is	something	of	a	rite	of	passage.	Since
TypeScript	is	a	superset	of	JavaScript,	TypeScript	developers	also	need	to	learn
how	to	use	this	and	how	to	spot	when	it's	not	being	used	correctly.	Fortunately,
TypeScript	lets	you	catch	incorrect	uses	of	this	with	a	couple	of	techniques.	If
you	need	to	learn	how	this	works	in	JavaScript,	though,	first	read	Yehuda	Katz's
Understanding	JavaScript	Function	Invocation	and	"this".	Yehuda's	article
explains	the	inner	workings	of	this	very	well,	so	we'll	just	cover	the	basics	here.

http://yehudakatz.com/2011/08/11/understanding-javascript-function-invocation-and-this/

this	and	arrow	functions

In	JavaScript,	this	is	a	variable	that's	set	when	a	function	is	called.	This	makes	it
a	very	powerful	and	flexible	feature,	but	it	comes	at	the	cost	of	always	having	to
know	about	the	context	that	a	function	is	executing	in.	This	is	notoriously
confusing,	especially	when	returning	a	function	or	passing	a	function	as	an
argument.

Let's	look	at	an	example:

let	deck	=	{

		suits:	["hearts",	"spades",	"clubs",	"diamonds"],

		cards:	Array(52),

		createCardPicker:	function()	{

				return	function()	{

						let	pickedCard	=	Math.floor(Math.random()	*	52);

						let	pickedSuit	=	Math.floor(pickedCard	/	13);

						return	{	suit:	this.suits[pickedSuit],	card:	pickedCard	%	13	};

				};

		}

};

let	cardPicker	=	deck.createCardPicker();

let	pickedCard	=	cardPicker();

alert("card:	"	+	pickedCard.card	+	"	of	"	+	pickedCard.suit);

Notice	that	createCardPicker	is	a	function	that	itself	returns	a	function.	If	we
tried	to	run	the	example,	we	would	get	an	error	instead	of	the	expected	alert	box.
This	is	because	the	this	being	used	in	the	function	created	by	createCardPicker
will	be	set	to	window	instead	of	our	deck	object.	That's	because	we	call
cardPicker()	on	its	own.	A	top-level	non-method	syntax	call	like	this	will	use
window	for	this.	(Note:	under	strict	mode,	this	will	be	undefined	rather	than
window).

We	can	fix	this	by	making	sure	the	function	is	bound	to	the	correct	this	before
we	return	the	function	to	be	used	later.	This	way,	regardless	of	how	it's	later
used,	it	will	still	be	able	to	see	the	original	deck	object.	To	do	this,	we	change	the
function	expression	to	use	the	ECMAScript	6	arrow	syntax.	Arrow	functions
capture	the	this	where	the	function	is	created	rather	than	where	it	is	invoked:

let	deck	=	{

		suits:	["hearts",	"spades",	"clubs",	"diamonds"],

		cards:	Array(52),

		createCardPicker:	function()	{

				//	NOTE:	the	line	below	is	now	an	arrow	function,	allowing	us	to	capture	'this'	right	here

				return	()	=>	{

						let	pickedCard	=	Math.floor(Math.random()	*	52);

						let	pickedSuit	=	Math.floor(pickedCard	/	13);

						return	{	suit:	this.suits[pickedSuit],	card:	pickedCard	%	13	};

				};

		}

};

let	cardPicker	=	deck.createCardPicker();

let	pickedCard	=	cardPicker();

alert("card:	"	+	pickedCard.card	+	"	of	"	+	pickedCard.suit);

Even	better,	TypeScript	will	warn	you	when	you	make	this	mistake	if	you	pass
the	--noImplicitThis	flag	to	the	compiler.	It	will	point	out	that	this	in
this.suits[pickedSuit]	is	of	type	any.

this	parameters

Unfortunately,	the	type	of	this.suits[pickedSuit]	is	still	any.	That's	because
this	comes	from	the	function	expression	inside	the	object	literal.	To	fix	this,	you
can	provide	an	explicit	this	parameter.	this	parameters	are	fake	parameters	that
come	first	in	the	parameter	list	of	a	function:

function	f(this:	void)	{

		//	make	sure	`this`	is	unusable	in	this	standalone	function

}

Let's	add	a	couple	of	interfaces	to	our	example	above,	Card	and	Deck,	to	make
the	types	clearer	and	easier	to	reuse:

interface	Card	{

		suit:	string;

		card:	number;

}

interface	Deck	{

		suits:	string[];

		cards:	number[];

		createCardPicker(this:	Deck):	()	=>	Card;

}

let	deck:	Deck	=	{

		suits:	["hearts",	"spades",	"clubs",	"diamonds"],

		cards:	Array(52),

		//	NOTE:	The	function	now	explicitly	specifies	that	its	callee	must	be	of	type	Deck

		createCardPicker:	function(this:	Deck)	{

				return	()	=>	{

						let	pickedCard	=	Math.floor(Math.random()	*	52);

						let	pickedSuit	=	Math.floor(pickedCard	/	13);

						return	{	suit:	this.suits[pickedSuit],	card:	pickedCard	%	13	};

				};

		}

};

let	cardPicker	=	deck.createCardPicker();

let	pickedCard	=	cardPicker();

alert("card:	"	+	pickedCard.card	+	"	of	"	+	pickedCard.suit);

Now	TypeScript	knows	that	createCardPicker	expects	to	be	called	on	a	Deck
object.	That	means	that	this	is	of	type	Deck	now,	not	any,	so	--noImplicitThis
will	not	cause	any	errors.

this	parameters	in	callbacks
You	can	also	run	into	errors	with	this	in	callbacks,	when	you	pass	functions	to	a
library	that	will	later	call	them.	Because	the	library	that	calls	your	callback	will
call	it	like	a	normal	function,	this	will	be	undefined.	With	some	work	you	can
use	this	parameters	to	prevent	errors	with	callbacks	too.	First,	the	library	author
needs	to	annotate	the	callback	type	with	this:

interface	UIElement	{

		addClickListener(onclick:	(this:	void,	e:	Event)	=>	void):	void;

}

this:	void	means	that	addClickListener	expects	onclick	to	be	a	function	that
does	not	require	a	this	type.	Second,	annotate	your	calling	code	with	this:

class	Handler	{

		info:	string;

		onClickBad(this:	Handler,	e:	Event)	{

				//	oops,	used	`this`	here.	using	this	callback	would	crash	at	runtime

				this.info	=	e.message;

		}

}

let	h	=	new	Handler();

uiElement.addClickListener(h.onClickBad);	//	error!

With	this	annotated,	you	make	it	explicit	that	onClickBad	must	be	called	on	an
instance	of	Handler.	Then	TypeScript	will	detect	that	addClickListener	requires
a	function	that	has	this:	void.	To	fix	the	error,	change	the	type	of	this:

class	Handler	{

		info:	string;

		onClickGood(this:	void,	e:	Event)	{

				//	can't	use	`this`	here	because	it's	of	type	void!

				console.log("clicked!");

		}

}

let	h	=	new	Handler();

uiElement.addClickListener(h.onClickGood);

Because	onClickGood	specifies	its	this	type	as	void,	it	is	legal	to	pass	to
addClickListener.	Of	course,	this	also	means	that	it	can't	use	this.info.	If	you
want	both	then	you'll	have	to	use	an	arrow	function:

class	Handler	{

		info:	string;

		onClickGood	=	(e:	Event)	=>	{

				this.info	=	e.message;

		};

}

This	works	because	arrow	functions	use	the	outer	this,	so	you	can	always	pass
them	to	something	that	expects	this:	void.	The	downside	is	that	one	arrow
function	is	created	per	object	of	type	Handler.	Methods,	on	the	other	hand,	are
only	created	once	and	attached	to	Handler's	prototype.	They	are	shared	between
all	objects	of	type	Handler.

Overloads

JavaScript	is	inherently	a	very	dynamic	language.	It's	not	uncommon	for	a	single
JavaScript	function	to	return	different	types	of	objects	based	on	the	shape	of	the

JavaScript	function	to	return	different	types	of	objects	based	on	the	shape	of	the
arguments	passed	in.

let	suits	=	["hearts",	"spades",	"clubs",	"diamonds"];

function	pickCard(x):	any	{

		//	Check	to	see	if	we're	working	with	an	object/array

		//	if	so,	they	gave	us	the	deck	and	we'll	pick	the	card

		if	(typeof	x	==	"object")	{

				let	pickedCard	=	Math.floor(Math.random()	*	x.length);

				return	pickedCard;

		}

		//	Otherwise	just	let	them	pick	the	card

		else	if	(typeof	x	==	"number")	{

				let	pickedSuit	=	Math.floor(x	/	13);

				return	{	suit:	suits[pickedSuit],	card:	x	%	13	};

		}

}

let	myDeck	=	[

		{	suit:	"diamonds",	card:	2	},

		{	suit:	"spades",	card:	10	},

		{	suit:	"hearts",	card:	4	}

];

let	pickedCard1	=	myDeck[pickCard(myDeck)];

alert("card:	"	+	pickedCard1.card	+	"	of	"	+	pickedCard1.suit);

let	pickedCard2	=	pickCard(15);

alert("card:	"	+	pickedCard2.card	+	"	of	"	+	pickedCard2.suit);

Here,	the	pickCard	function	will	return	two	different	things	based	on	what	the
user	has	passed	in.	If	the	users	passes	in	an	object	that	represents	the	deck,	the
function	will	pick	the	card.	If	the	user	picks	the	card,	we	tell	them	which	card
they've	picked.	But	how	do	we	describe	this	to	the	type	system?

The	answer	is	to	supply	multiple	function	types	for	the	same	function	as	a	list	of
overloads.	This	list	is	what	the	compiler	will	use	to	resolve	function	calls.	Let's
create	a	list	of	overloads	that	describe	what	our	pickCard	accepts	and	what	it
returns.

let	suits	=	["hearts",	"spades",	"clubs",	"diamonds"];

function	pickCard(x:	{	suit:	string;	card:	number	}[]):	number;

function	pickCard(x:	number):	{	suit:	string;	card:	number	};

function	pickCard(x:	any):	any	{

		//	Check	to	see	if	we're	working	with	an	object/array

		//	if	so,	they	gave	us	the	deck	and	we'll	pick	the	card

		if	(typeof	x	==	"object")	{

				let	pickedCard	=	Math.floor(Math.random()	*	x.length);

				return	pickedCard;

		}

		//	Otherwise	just	let	them	pick	the	card

		else	if	(typeof	x	==	"number")	{

				let	pickedSuit	=	Math.floor(x	/	13);

				return	{	suit:	suits[pickedSuit],	card:	x	%	13	};

		}

}

let	myDeck	=	[

		{	suit:	"diamonds",	card:	2	},

		{	suit:	"spades",	card:	10	},

		{	suit:	"hearts",	card:	4	}

];

let	pickedCard1	=	myDeck[pickCard(myDeck)];

alert("card:	"	+	pickedCard1.card	+	"	of	"	+	pickedCard1.suit);

let	pickedCard2	=	pickCard(15);

alert("card:	"	+	pickedCard2.card	+	"	of	"	+	pickedCard2.suit);

With	this	change,	the	overloads	now	give	us	type	checked	calls	to	the	pickCard
function.

In	order	for	the	compiler	to	pick	the	correct	type	check,	it	follows	a	similar
process	to	the	underlying	JavaScript.	It	looks	at	the	overload	list	and,	proceeding
with	the	first	overload,	attempts	to	call	the	function	with	the	provided
parameters.	If	it	finds	a	match,	it	picks	this	overload	as	the	correct	overload.	For
this	reason,	it's	customary	to	order	overloads	from	most	specific	to	least	specific.

Note	that	the	function	pickCard(x):	any	piece	is	not	part	of	the	overload	list,	so
it	only	has	two	overloads:	one	that	takes	an	object	and	one	that	takes	a	number.
Calling	pickCard	with	any	other	parameter	types	would	cause	an	error.

Literal	Types
A	literal	is	a	more	concrete	sub-type	of	a	collective	type.	What	this	means	is	that
"Hello	World"	is	a	string,	but	a	string	is	not	"Hello	World"	inside	the	type
system.

There	are	two	sets	of	literal	types	available	in	TypeScript	today,	strings	and
numbers,	by	using	literal	types	you	can	allow	an	exact	value	which	a	string	or
number	must	have.

Literal	Narrowing

When	you	declare	a	variable	via	var	or	let,	you	are	telling	the	compiler	that
there	is	the	chance	that	this	variable	will	change	its	contents.	In	contrast,	using
const	to	declare	a	variable	will	inform	TypeScript	that	this	object	will	never
change.

//	We're	making	a	guarantee	that	this	variable

//	helloWorld	will	never	change,	by	using	const.

//	So,	TypeScript	sets	the	type	to	be	"Hello	World"	not	string

const	helloWorld	=	"Hello	World";

//	On	the	other	hand,	a	let	can	change,	and	so	the	compiler	declares	it	a	string

let	hiWorld	=	"Hi	World";Try

The	process	of	going	from	an	infinite	number	of	potential	cases	(there	are	an
infinite	number	of	possible	string	values)	to	a	smaller,	finite	number	of	potential
case	(in	helloWorld's	case:	1)	is	called	narrowing.

String	Literal	Types

In	practice	string	literal	types	combine	nicely	with	union	types,	type	guards,	and
type	aliases.	You	can	use	these	features	together	to	get	enum-like	behavior	with
strings.

type	Easing	=	"ease-in"	|	"ease-out"	|	"ease-in-out";

https://www.typescriptlang.org/play/#code/PTAEHUFMHICdNAWwIYGsCWA7A5qZpsBXZWZTAF0gXIAtlzRb0BnUANxPWQCMAbSAFAhQNSL14B7cBNi8AJqADu6caEyQ2kWKADGdHJAA0obgE9QhZllw6JmZuQB0AoWADKE4wBVTAB0huOrDovgzMkOSstNR+1BImCABEABJikhAy8olqEmHkwTgCtvYMouJSmQoAvKApafHSsnKJANwuwgDymIyioLmi2vpyxvj8DDpkuvrYRniYCszx0boSiL4qWqBykDq8JJCs6Az4DgXYAmMi6I3yoDUp6BlNrUA

class	UIElement	{

		animate(dx:	number,	dy:	number,	easing:	Easing)	{

				if	(easing	===	"ease-in")	{

						//	...

				}	else	if	(easing	===	"ease-out")	{

				}	else	if	(easing	===	"ease-in-out")	{

				}	else	{

						//	It's	possible	that	someone	could	reach	this

						//	by	ignoring	your	types	though.

				}

		}

}

let	button	=	new	UIElement();

button.animate(0,	0,	"ease-in");

button.animate(0,	0,	"uneasy");

Argument	of	type	'"uneasy"'	is	not	assignable	to	parameter	of	type	'Easing'.

Try

You	can	pass	any	of	the	three	allowed	strings,	but	any	other	string	will	give	the
error

Argument	of	type	'"uneasy"'	is	not	assignable	to	parameter	of	type	'"ease-in"	|	"ease-out"	|	"ease-in-out"'

String	literal	types	can	be	used	in	the	same	way	to	distinguish	overloads:

function	createElement(tagName:	"img"):	HTMLImageElement;

function	createElement(tagName:	"input"):	HTMLInputElement;

//	...	more	overloads	...

function	createElement(tagName:	string):	Element	{

		//	...	code	goes	here	...

}

Numeric	Literal	Types

TypeScript	also	has	numeric	literal	types,	which	act	the	same	as	the	string
literals	above.

function	rollDice():	1	|	2	|	3	|	4	|	5	|	6	{

		return	(Math.floor(Math.random()	*	6)	+	1)	as	1	|	2	|	3	|	4	|	5	|	6;

}

const	result	=	rollDice();Try

A	common	case	for	their	use	is	for	describing	config	values:

https://www.typescriptlang.org/play/#code/PTAEAEFMCdoe2gZwFygEwGYAsBWAUAC4CeADpKAKICGiAlgHYDmoAvKAESQ2QC0D7oAD4cuiXnACuBAcM7c+9HpOkBuPHgDGAGxqJQAVQCSFLZAC2kegVABvPKFBV6tM1QKQAFABMAHqnoSZgBGMAA0oF5E-oEh0OGiDIyo1HRMAJS29g6gtABmoB4JTKwsbHJiCuwZdtnZIKAAdE1ZDgC+oJBaYjn5hTSJJWWi4lJVmbXtnd15BUXMpUPyDEqj1S2gk13kNbWg9YYEAOR6JHCIdEGmoAQAFm6giHAWcPTkGpJaXqDQXBo31zdaIh1g56kEiDlGPQEAMiJJoNdSJA9LdJIwbg11q0stjsXhTNYglICC9WKBXgB3AzGUwWKweNJqIkEEn0BpOFxuTwABnCvJES3oVSZxJe7OcrncHn5-PYEleNCIwqAA
https://www.typescriptlang.org/play/#code/GYVwdgxgLglg9mABAJzgGzQERhApgCgEoAuRARkQB9EAmKxAZnoBZ6BWegNkQG8AoRClxQQyJPgCyAQygALAHTA0cOMkkyFyKWAAmcALZFEAKkSdCiANTkLUgM7l6dak2qtqHapwDcfAL58fBAIdlBCdiBoYQC8KOhYOASE3kA

A	common	case	for	their	use	is	for	describing	config	values:

interface	MapConfig	{

		lng:	number;

		lat:	number;

		tileSize:	8	|	16	|	32;

}

setupMap({	lng:	-73.935242,	lat:	40.73061,	tileSize:	16	});Try

https://www.typescriptlang.org/play/#code/PQKhAIGECcFMEMAusDO57gLbwA7gMawB2ycAJuouADYD2+w1S4IwAUGbPk3OAGYBXIvkQBLWkXApYiATgCyuABT4JfUQHMAXOEU5IazQEodAN1qiyAbjbBg4ALRP8AxE4dtRJWND7xCurgGROoa4ADebOA0RNrgRAKYAEY+NtFMiDoJyalR4GLUsADKogBesDoAHOAAPuAAjABsteAAzABMNgC+bGzSsgrK4TFxDgDsrQB0AJytAKztACztADQ0SDqLAAyTE1uN9WsFxWUVDc1dRlZAA

Unions	and	Intersection	Types
So	far,	the	handbook	has	covered	types	which	are	atomic	objects.	However,	as
you	model	more	types	you	find	yourself	looking	for	tools	which	let	you	compose
or	combine	existing	types	instead	of	creating	them	from	scratch.

Intersection	and	Union	types	are	one	of	the	ways	in	which	you	can	compose
types.

Union	Types

Occasionally,	you'll	run	into	a	library	that	expects	a	parameter	to	be	either	a
number	or	a	string.	For	instance,	take	the	following	function:

/**

	*	Takes	a	string	and	adds	"padding"	to	the	left.

	*	If	'padding'	is	a	string,	then	'padding'	is	appended	to	the	left	side.

	*	If	'padding'	is	a	number,	then	that	number	of	spaces	is	added	to	the	left	side.

	*/

function	padLeft(value:	string,	padding:	any)	{

		if	(typeof	padding	===	"number")	{

				return	Array(padding	+	1).join("	")	+	value;

		}

		if	(typeof	padding	===	"string")	{

				return	padding	+	value;

		}

		throw	new	Error(`Expected	string	or	number,	got	'${padding}'.`);

}

padLeft("Hello	world",	4);	//	returns	"				Hello	world"Try

The	problem	with	padLeft	in	the	above	example	is	that	its	padding	parameter	is
typed	as	any.	That	means	that	we	can	call	it	with	an	argument	that's	neither	a
number	nor	a	string,	but	TypeScript	will	be	okay	with	it.

//	passes	at	compile	time,	fails	at	runtime.

let	indentedString	=	padLeft("Hello	world",	true);Try

In	traditional	object-oriented	code,	we	might	abstract	over	the	two	types	by
creating	a	hierarchy	of	types.	While	this	is	much	more	explicit,	it's	also	a	little

https://www.typescriptlang.org/play/#code/PQKhCgAIUgVBDA1gUwM6XpVAXATgSwDsBzDQgEw3PPQCIAHeao42ybAe3YAtlIAbZADNsAOigwAkkMgByRsxKzI+dJhwESAGh7JCcheRbLVGevT3lklTroHDsWfFfHRI0g0yNKVayIQBXAFsAI2RcHWxefSj4R0DQ8MgOGVRGAGM0XyorGy4ovkERJxcJYHAhAMJ07HwOfQUAGQcACgA3eH4A5AAuLDwWHUMWPvhCAE8ASkgAbygVGRbscYsUyGGSSABeHchaBLDcWmm5yDPIXGRsANx9AEFcXHhxlo3SAGpIAEZJ0QArDhEFpsY6QT4dLrIADc8wAvvN8ItlqsZG9trtaBoWKDTudLtdbusvCwwZAId0YWd4WcorgOAB3fzIRkAUUeHFwLQABiyAB4WGrWfqaUgc-zBQ46YgcRyyAAkMzesNkoi5kxh8PATVatAAEsh+PwuPSOfxyLQdAAWdWQYDAC5XG6EOjnSD6w3G03moA
https://www.typescriptlang.org/play/#code/CYUwxgNghgTiAEAzArgOzAFwJYHtXwAcpgAZERDACgDcoJkQAueAZwxi1QHMAaQ44Jy7MoqAJ4BKZmw7cA3ACgA9EvgBaDWGQYNa5aqIsWIFvCgZ4YHAFsCWCAmzWQfRFHunz8GGicgAdAoOFpygqBggwADK7ELwALz8pORUAEQAEiAQEDjwAO44MBDAqXzsDBJyQA

bit	overkill.	One	of	the	nice	things	about	the	original	version	of	padLeft	was	that
we	were	able	to	just	pass	in	primitives.	That	meant	that	usage	was	simple	and
concise.	This	new	approach	also	wouldn't	help	if	we	were	just	trying	to	use	a
function	that	already	exists	elsewhere.

Instead	of	any,	we	can	use	a	union	type	for	the	padding	parameter:

/**

	*	Takes	a	string	and	adds	"padding"	to	the	left.

	*	If	'padding'	is	a	string,	then	'padding'	is	appended	to	the	left	side.

	*	If	'padding'	is	a	number,	then	that	number	of	spaces	is	added	to	the	left	side.

	*/

function	padLeft(value:	string,	padding:	string	|	number)	{

		//	...

}

let	indentedString	=	padLeft("Hello	world",	true);

Argument	of	type	'boolean'	is	not	assignable	to	parameter	of	type	'string	|	number'.

Try

A	union	type	describes	a	value	that	can	be	one	of	several	types.	We	use	the
vertical	bar	(|)	to	separate	each	type,	so	number	|	string	|	boolean	is	the	type
of	a	value	that	can	be	a	number,	a	string,	or	a	boolean.

Unions	with	Common	Fields

If	we	have	a	value	that	is	a	union	type,	we	can	only	access	members	that	are
common	to	all	types	in	the	union.

interface	Bird	{

		fly():	void;

		layEggs():	void;

}

interface	Fish	{

		swim():	void;

		layEggs():	void;

}

declare	function	getSmallPet():	Fish	|	Bird;

https://www.typescriptlang.org/play/#code/PTAEAEFMCdoe2gZwFygEwGYAsBWAUMAFSF6iGgAqAhgNaSKhWiIAu0AlgHYDmjnAJo378GAIgAOVYV26jQLOPIAWkUABtIAMxYA6UuQCSm0AHJJ0nidDsGTVhx4AaZZE6nz-GVZuNx41-yQggou6loszOyBemSgRu5SnpbWtqCcAK4AtgBGMM4sKm4FVBEZOTCgcMaIkgDG9ClCgcGKBaoa2pHR+sB4mumctSzscG7mADLhABQAblRq6ZCo9jLOHjLLbDKgAD5pWbnQAJSgAN6koCCgOjd4AL54eBoRXIGcLEEAyls8oAC8oAm01EAAlIGo1IoAO4INT8UT5aCLI4AbiAA

let	pet	=	getSmallPet();

pet.layEggs();

//	Only	available	in	one	of	the	two	possible	types

pet.swim();

Property	'swim'	does	not	exist	on	type	'Bird	|	Fish'.

		Property	'swim'	does	not	exist	on	type	'Bird'.

Try

Union	types	can	be	a	bit	tricky	here,	but	it	just	takes	a	bit	of	intuition	to	get	used
to.	If	a	value	has	the	type	A	|	B,	we	only	know	for	certain	that	it	has	members
that	both	A	and	B	have.	In	this	example,	Bird	has	a	member	named	fly.	We	can't
be	sure	whether	a	variable	typed	as	Bird	|	Fish	has	a	fly	method.	If	the	variable
is	really	a	Fish	at	runtime,	then	calling	pet.fly()	will	fail.

Discriminating	Unions

A	common	technique	for	working	with	unions	is	to	have	a	single	field	which
uses	literal	types	which	you	can	use	to	let	TypeScript	narrow	down	the	possible
current	type.	For	example,	we're	going	to	create	a	union	of	three	types	which
have	a	single	shared	field.

type	NetworkLoadingState	=	{

		state:	"loading";

};

type	NetworkFailedState	=	{

		state:	"failed";

		code:	number;

};

type	NetworkSuccessState	=	{

		state:	"success";

		response:	{

				title:	string;

				duration:	number;

				summary:	string;

		};

};

//	Create	a	type	which	represents	only	one	of	the	above	types

//	but	you	aren't	sure	which	it	is	yet.

https://www.typescriptlang.org/play/#code/PTAEAEFMCdoe2gZwFygEwGYME4BQuBLAOwBcYAzAQwGNJQAhA6AE1AG9dRRyAbATwAUASlQA3OAWYBuTqB6U+AUQDmyxMLETpuAL75iZaFVqgAYgUQALdrMQB3AgFsNocZJld5S1epGutMnq4zJDU8tB05ACuRNQkBHBEoMqQJADKjpQ8PAAKqS7mVqAAPgxM2rg8qaAADtUAvMmpGVm5+UIydSQAdF4qasIyuCCgAPJE-KCUopQE8gBGVaDEoIl0cOSgJJZ0JHZwtXCIiASLu3x1iLhd3fZOg0A

type	NetworkState	=

		|	NetworkLoadingState

		|	NetworkFailedState

		|	NetworkSuccessState;

All	of	the	above	types	have	a	field	named	state,	and	then	they	also	have	their
own	fields:

NetworkLoadingState NetworkFailedState NetworkSuccessState

state state state
code response

Given	the	state	field	is	common	in	every	type	inside	NetworkState	-	it	is	safe	for
your	code	to	access	without	an	existence	check.

With	state	as	a	literal	type,	you	can	compare	the	value	of	state	to	the
equivalent	string	and	TypeScript	will	know	which	type	is	currently	being	used.

NetworkLoadingState NetworkFailedState NetworkSuccessState

"loading" "failed" "success"

In	this	case,	you	can	use	a	switch	statement	to	narrow	down	which	type	is
represented	at	runtime:

type	NetworkState	=

		|	NetworkLoadingState

		|	NetworkFailedState

		|	NetworkSuccessState;

function	networkStatus(state:	NetworkState):	string	{

		//	Right	now	TypeScript	does	not	know	which	of	the	three

		//	potential	types	state	could	be.

		//	Trying	to	access	a	property	which	isn't	shared

		//	across	all	types	will	raise	an	error

		state.code;

Property	'code'	does	not	exist	on	type	'NetworkState'.

		Property	'code'	does	not	exist	on	type	'NetworkLoadingState'.

		//	By	switching	on	state,	TypeScript	can	narrow	the	union

		//	down	in	code	flow	analysis

		switch	(state.state)	{

				case	"loading":

						return	"Downloading...";

				case	"failed":

						//	The	type	must	be	NetworkFailedState	here,

						//	so	accessing	the	`code`	field	is	safe

						return	`Error	${state.code}	downloading`;

				case	"success":

						return	`Downloaded	${state.response.title}	-	${state.response.summary

		}

}Try

https://www.typescriptlang.org/play/#code/PTAEAEFMCdoe2gZwFygEwGYME4BQAXATwAdJQA5SfAdwQGsAZOAQwBMBLAOwHMBlfZvjIBeUAG9coUIgFDUAIgA2LDj3kBuXAF9NBEmUo16AMWbtFkVv0Ejxk6bMgKAZmYusN9gMZxWT0JwArgC2AEYwmjq4eqQUVLTQdLyBXl6QiIjWQqCiElIyNgqIKWkZnlLQ6cRwnIj+eVKg+Oz4Fqgy0Fzcmo2grIHQguw1qEFhEfb5IcHM0ITt+J08PaBRUSCgALTbXoH425sxBvH0WSL2AD5xRolMbF1nl9cJdKbmlo9SV4YvyanpmUcumcgU4XmaNQCJ0SWUCiAAFAU5M9To4AJQLJbcOxSDYAJXY3AAFvgAnBqKAACr6XheTrEUmsODpMmkuiccmgahE9heImgODOJpEsj4ImVSD2DbVIScZrMRRNfSIBw2UA+QKKVigcIAOmiuLAlLmXSacFAzH+GQtoGI8FI0CIXJ5fNA7EQnAA5KTEETZpYpWBLfBrQrFURSCrqOZFYN3WRmJxQDB4NB7EjILqfH5dIbQAAhQjSaP4PmmyEZgA0VJpdPYDPViYCs3gFLFZFBw04gb65KTXHVvjIzmUFMTCsIiHd6ZLrsRjl1GbROMaXmYdVAShUXXkyEmjUq+AGSfkABE+8p7jxdTfyqv12R5K53h497085SRUrYsE4aTwiiiRvO4ZygCKlSVvueaIOalqlFOPDCmQAAG2aQMhoDOOwkBam6KqIMwziSu+oCHseoDIQAorACCgAAJGIGZZkOWi9tQnCXqo3DISsUhrhu8jFFaiC7lBpFUORyHnuxnGWPRjELpUiDVLUmbNK0kCsZs8lMUpKl1Iu0yzIQWg8fYWjaEAA

Intersection	Types

Intersection	types	are	closely	related	to	union	types,	but	they	are	used	very
differently.	An	intersection	type	combines	multiple	types	into	one.	This	allows
you	to	add	together	existing	types	to	get	a	single	type	that	has	all	the	features
you	need.	For	example,	Person	&	Serializable	&	Loggable	is	a	type	which	is
all	of	Person	and	Serializable	and	Loggable.	That	means	an	object	of	this	type
will	have	all	members	of	all	three	types.

For	example,	if	you	had	networking	requests	with	consistent	error	handling	then
you	could	separate	out	the	error	handling	into	it's	own	type	which	is	merged	with
types	which	correspond	to	a	single	response	type.

interface	ErrorHandling	{

		success:	boolean;

		error?:	{	message:	string	};

}

interface	ArtworksData	{

		artworks:	{	title:	string	}[];

}

interface	ArtistsData	{

		artists:	{	name:	string	}[];

}

//	These	interfaces	are	composed	to	have

//	consistent	error	handling,	and	their	own	data.

type	ArtworksResponse	=	ArtworksData	&	ErrorHandling;

type	ArtistsResponse	=	ArtistsData	&	ErrorHandling;

const	handleArtistsResponse	=	(response:	ArtistsResponse)	=>	{

		if	(response.error)	{

				console.error(response.error.message);

				return;

		}

		console.log(response.artists);

};Try

https://www.typescriptlang.org/play/#code/JYOwLgpgTgZghgYwgAgKJSgeygCTiAEwBtQBzZAbwChlkBnAVwSTroC5kAjTTIifANw1k0LFAD8HCsgC2EVnFIQOdMFDLIAvkM1UqoSLEQoAglDAB3bAGs6AEThg4lYXHNWotqcjDAwfFTUNTQBtAF0dPQNoeCRkM19Ve0dnalo3RLB2SmQQODlA9RByUIiqXSoAekrkABUAC3kUaKMWZDcUBEwZAAdMOggCH0xkergANwgqmq6QOmBVCHARDGxR-GIyABp2wh9G4ChkTAsQZAIUgDo9MABPHtN3GzoAJXk+uZQAXninz2SnMgAGRoVa4DYkYpCO4PX6ZV7vTCfZA-BILLIOQEg9BiPCESGkIRUWaqdb4iBopJvOgfAYo5AACigiM+HEpWWptIgAEoUQA+Fy0YAwRnMmlIgaXUTYXlpWjIEm8CBSsFMlmS6VQS5yBRKblCeXIZlgBhQEAGrR6WiKviXIiYUhq8WfS4ZdF0fXlARAA

Classes

Introduction

Traditional	JavaScript	uses	functions	and	prototype-based	inheritance	to	build	up
reusable	components,	but	this	may	feel	a	bit	awkward	to	programmers	more
comfortable	with	an	object-oriented	approach,	where	classes	inherit	functionality
and	objects	are	built	from	these	classes.	Starting	with	ECMAScript	2015,	also
known	as	ECMAScript	6,	JavaScript	programmers	can	build	their	applications
using	this	object-oriented	class-based	approach.	In	TypeScript,	we	allow
developers	to	use	these	techniques	now,	and	compile	them	down	to	JavaScript
that	works	across	all	major	browsers	and	platforms,	without	having	to	wait	for
the	next	version	of	JavaScript.

Classes

Let's	take	a	look	at	a	simple	class-based	example:

class	Greeter	{

		greeting:	string;

		constructor(message:	string)	{

				this.greeting	=	message;

		}

		greet()	{

				return	"Hello,	"	+	this.greeting;

		}

}

let	greeter	=	new	Greeter("world");

The	syntax	should	look	familiar	if	you've	used	C#	or	Java	before.	We	declare	a
new	class	Greeter.	This	class	has	three	members:	a	property	called	greeting,	a
constructor,	and	a	method	greet.

You'll	notice	that	in	the	class	when	we	refer	to	one	of	the	members	of	the	class
we	prepend	this..	This	denotes	that	it's	a	member	access.

In	the	last	line	we	construct	an	instance	of	the	Greeter	class	using	new.	This	calls
into	the	constructor	we	defined	earlier,	creating	a	new	object	with	the	Greeter
shape,	and	running	the	constructor	to	initialize	it.

Inheritance

In	TypeScript,	we	can	use	common	object-oriented	patterns.	One	of	the	most
fundamental	patterns	in	class-based	programming	is	being	able	to	extend
existing	classes	to	create	new	ones	using	inheritance.

Let's	take	a	look	at	an	example:

class	Animal	{

		move(distanceInMeters:	number	=	0)	{

				console.log(`Animal	moved	${distanceInMeters}m.`);

		}

}

class	Dog	extends	Animal	{

		bark()	{

				console.log("Woof!	Woof!");

		}

}

const	dog	=	new	Dog();

dog.bark();

dog.move(10);

dog.bark();

This	example	shows	the	most	basic	inheritance	feature:	classes	inherit	properties
and	methods	from	base	classes.	Here,	Dog	is	a	derived	class	that	derives	from	the
Animal	base	class	using	the	extends	keyword.	Derived	classes	are	often	called
subclasses,	and	base	classes	are	often	called	superclasses.

Because	Dog	extends	the	functionality	from	Animal,	we	were	able	to	create	an
instance	of	Dog	that	could	both	bark()	and	move().

Let's	now	look	at	a	more	complex	example.

class	Animal	{

		name:	string;

		constructor(theName:	string)	{

				this.name	=	theName;

		}

		move(distanceInMeters:	number	=	0)	{

				console.log(`${this.name}	moved	${distanceInMeters}m.`);

		}

}

class	Snake	extends	Animal	{

		constructor(name:	string)	{

				super(name);

		}

		move(distanceInMeters	=	5)	{

				console.log("Slithering...");

				super.move(distanceInMeters);

		}

}

class	Horse	extends	Animal	{

		constructor(name:	string)	{

				super(name);

		}

		move(distanceInMeters	=	45)	{

				console.log("Galloping...");

				super.move(distanceInMeters);

		}

}

let	sam	=	new	Snake("Sammy	the	Python");

let	tom:	Animal	=	new	Horse("Tommy	the	Palomino");

sam.move();

tom.move(34);

This	example	covers	a	few	other	features	we	didn't	previously	mention.	Again,
we	see	the	extends	keywords	used	to	create	two	new	subclasses	of	Animal:	Horse
and	Snake.

One	difference	from	the	prior	example	is	that	each	derived	class	that	contains	a
constructor	function	must	call	super()	which	will	execute	the	constructor	of	the
base	class.	What's	more,	before	we	ever	access	a	property	on	this	in	a
constructor	body,	we	have	to	call	super().	This	is	an	important	rule	that
TypeScript	will	enforce.

The	example	also	shows	how	to	override	methods	in	the	base	class	with	methods
that	are	specialized	for	the	subclass.	Here	both	Snake	and	Horse	create	a	move
method	that	overrides	the	move	from	Animal,	giving	it	functionality	specific	to

each	class.	Note	that	even	though	tom	is	declared	as	an	Animal,	since	its	value	is
a	Horse,	calling	tom.move(34)	will	call	the	overriding	method	in	Horse:

Slithering...

Sammy	the	Python	moved	5m.

Galloping...

Tommy	the	Palomino	moved	34m.

Public,	private,	and	protected	modifiers

Public	by	default

In	our	examples,	we've	been	able	to	freely	access	the	members	that	we	declared
throughout	our	programs.	If	you're	familiar	with	classes	in	other	languages,	you
may	have	noticed	in	the	above	examples	we	haven't	had	to	use	the	word	public
to	accomplish	this;	for	instance,	C#	requires	that	each	member	be	explicitly
labeled	public	to	be	visible.	In	TypeScript,	each	member	is	public	by	default.

You	may	still	mark	a	member	public	explicitly.	We	could	have	written	the
Animal	class	from	the	previous	section	in	the	following	way:

class	Animal	{

		public	name:	string;

		public	constructor(theName:	string)	{

				this.name	=	theName;

		}

		public	move(distanceInMeters:	number)	{

				console.log(`${this.name}	moved	${distanceInMeters}m.`);

		}

}

ECMAScript	Private	Fields

With	TypeScript	3.8,	TypeScript	supports	the	new	JavaScript	syntax	for	private
fields:

class	Animal	{

				#name:	string;

				constructor(theName:	string)	{	this.#name	=	theName;	}

}

new	Animal("Cat").#name;	//	Property	'#name'	is	not	accessible	outside	class	'Animal'	because	it	has	a	private	identifier.

This	syntax	is	built	into	the	JavaScript	runtime	and	can	have	better	guarantees
about	the	isolation	of	each	private	field.	Right	now,	the	best	documentation	for
these	private	fields	is	in	the	TypeScript	3.8	release	notes.

Understanding	TypeScript's	private

TypeScript	also	has	it's	own	way	to	declare	a	member	as	being	marked	private,
it	cannot	be	accessed	from	outside	of	its	containing	class.	For	example:

class	Animal	{

		private	name:	string;

		constructor(theName:	string)	{

				this.name	=	theName;

		}

}

new	Animal("Cat").name;	//	Error:	'name'	is	private;

TypeScript	is	a	structural	type	system.	When	we	compare	two	different	types,
regardless	of	where	they	came	from,	if	the	types	of	all	members	are	compatible,
then	we	say	the	types	themselves	are	compatible.

However,	when	comparing	types	that	have	private	and	protected	members,	we
treat	these	types	differently.	For	two	types	to	be	considered	compatible,	if	one	of
them	has	a	private	member,	then	the	other	must	have	a	private	member	that
originated	in	the	same	declaration.	The	same	applies	to	protected	members.

Let's	look	at	an	example	to	better	see	how	this	plays	out	in	practice:

class	Animal	{

		private	name:	string;

		constructor(theName:	string)	{

				this.name	=	theName;

https://devblogs.microsoft.com/typescript/announcing-typescript-3-8-beta/#ecmascript-private-fields

		}

}

class	Rhino	extends	Animal	{

		constructor()	{

				super("Rhino");

		}

}

class	Employee	{

		private	name:	string;

		constructor(theName:	string)	{

				this.name	=	theName;

		}

}

let	animal	=	new	Animal("Goat");

let	rhino	=	new	Rhino();

let	employee	=	new	Employee("Bob");

animal	=	rhino;

animal	=	employee;	//	Error:	'Animal'	and	'Employee'	are	not	compatible

In	this	example,	we	have	an	Animal	and	a	Rhino,	with	Rhino	being	a	subclass	of
Animal.	We	also	have	a	new	class	Employee	that	looks	identical	to	Animal	in
terms	of	shape.	We	create	some	instances	of	these	classes	and	then	try	to	assign
them	to	each	other	to	see	what	will	happen.	Because	Animal	and	Rhino	share	the
private	side	of	their	shape	from	the	same	declaration	of	private	name:	string
in	Animal,	they	are	compatible.	However,	this	is	not	the	case	for	Employee.	When
we	try	to	assign	from	an	Employee	to	Animal	we	get	an	error	that	these	types	are
not	compatible.	Even	though	Employee	also	has	a	private	member	called	name,
it's	not	the	one	we	declared	in	Animal.

Understanding	protected

The	protected	modifier	acts	much	like	the	private	modifier	with	the	exception
that	members	declared	protected	can	also	be	accessed	within	deriving	classes.
For	example,

class	Person	{

		protected	name:	string;

		constructor(name:	string)	{

				this.name	=	name;

		}

}

class	Employee	extends	Person	{

		private	department:	string;

		constructor(name:	string,	department:	string)	{

				super(name);

				this.department	=	department;

		}

		public	getElevatorPitch()	{

				return	`Hello,	my	name	is	${this.name}	and	I	work	in	${this.department

		}

}

let	howard	=	new	Employee("Howard",	"Sales");

console.log(howard.getElevatorPitch());

console.log(howard.name);	//	error

Notice	that	while	we	can't	use	name	from	outside	of	Person,	we	can	still	use	it
from	within	an	instance	method	of	Employee	because	Employee	derives	from
Person.

A	constructor	may	also	be	marked	protected.	This	means	that	the	class	cannot
be	instantiated	outside	of	its	containing	class,	but	can	be	extended.	For	example,

class	Person	{

		protected	name:	string;

		protected	constructor(theName:	string)	{

				this.name	=	theName;

		}

}

//	Employee	can	extend	Person

class	Employee	extends	Person	{

		private	department:	string;

		constructor(name:	string,	department:	string)	{

				super(name);

				this.department	=	department;

		}

		public	getElevatorPitch()	{

				return	`Hello,	my	name	is	${this.name}	and	I	work	in	${this.department

		}

}

let	howard	=	new	Employee("Howard",	"Sales");

let	john	=	new	Person("John");	//	Error:	The	'Person'	constructor	is	protected

Readonly	modifier

You	can	make	properties	readonly	by	using	the	readonly	keyword.	Readonly
properties	must	be	initialized	at	their	declaration	or	in	the	constructor.

class	Octopus	{

		readonly	name:	string;

		readonly	numberOfLegs:	number	=	8;

		constructor(theName:	string)	{

				this.name	=	theName;

		}

}

let	dad	=	new	Octopus("Man	with	the	8	strong	legs");

dad.name	=	"Man	with	the	3-piece	suit";	//	error!	name	is	readonly.

Parameter	properties

In	our	last	example,	we	had	to	declare	a	readonly	member	name	and	a	constructor
parameter	theName	in	the	Octopus	class.	This	is	needed	in	order	to	have	the	value
of	theName	accessible	after	the	Octopus	constructor	is	executed.	Parameter
properties	let	you	create	and	initialize	a	member	in	one	place.	Here's	a	further
revision	of	the	previous	Octopus	class	using	a	parameter	property:

class	Octopus	{

		readonly	numberOfLegs:	number	=	8;

		constructor(readonly	name:	string)	{}

}

Notice	how	we	dropped	theName	altogether	and	just	use	the	shortened	readonly
name:	string	parameter	on	the	constructor	to	create	and	initialize	the	name
member.	We've	consolidated	the	declarations	and	assignment	into	one	location.

Parameter	properties	are	declared	by	prefixing	a	constructor	parameter	with	an
accessibility	modifier	or	readonly,	or	both.	Using	private	for	a	parameter

property	declares	and	initializes	a	private	member;	likewise,	the	same	is	done	for
public,	protected,	and	readonly.

Accessors

TypeScript	supports	getters/setters	as	a	way	of	intercepting	accesses	to	a
member	of	an	object.	This	gives	you	a	way	of	having	finer-grained	control	over
how	a	member	is	accessed	on	each	object.

Let's	convert	a	simple	class	to	use	get	and	set.	First,	let's	start	with	an	example
without	getters	and	setters.

class	Employee	{

		fullName:	string;

}

let	employee	=	new	Employee();

employee.fullName	=	"Bob	Smith";

if	(employee.fullName)	{

		console.log(employee.fullName);

}

While	allowing	people	to	randomly	set	fullName	directly	is	pretty	handy,	we
may	also	want	enforce	some	constraints	when	fullName	is	set.

In	this	version,	we	add	a	setter	that	checks	the	length	of	the	newName	to	make	sure
it's	compatible	with	the	max-length	of	our	backing	database	field.	If	it	isn't	we
throw	an	error	notifying	client	code	that	something	went	wrong.

To	preserve	existing	functionality,	we	also	add	a	simple	getter	that	retrieves
fullName	unmodified.

const	fullNameMaxLength	=	10;

class	Employee	{

		private	_fullName:	string;

		get	fullName():	string	{

				return	this._fullName;

		}

		set	fullName(newName:	string)	{

				if	(newName	&&	newName.length	>	fullNameMaxLength)	{

						throw	new	Error("fullName	has	a	max	length	of	"	+	fullNameMaxLength

				}

				this._fullName	=	newName;

		}

}

let	employee	=	new	Employee();

employee.fullName	=	"Bob	Smith";

if	(employee.fullName)	{

		console.log(employee.fullName);

}

To	prove	to	ourselves	that	our	accessor	is	now	checking	the	length	of	values,	we
can	attempt	to	assign	a	name	longer	than	10	characters	and	verify	that	we	get	an
error.

A	couple	of	things	to	note	about	accessors:

First,	accessors	require	you	to	set	the	compiler	to	output	ECMAScript	5	or
higher.	Downleveling	to	ECMAScript	3	is	not	supported.	Second,	accessors	with
a	get	and	no	set	are	automatically	inferred	to	be	readonly.	This	is	helpful	when
generating	a	.d.ts	file	from	your	code,	because	users	of	your	property	can	see
that	they	can't	change	it.

Static	Properties

Up	to	this	point,	we've	only	talked	about	the	instance	members	of	the	class,
those	that	show	up	on	the	object	when	it's	instantiated.	We	can	also	create	static
members	of	a	class,	those	that	are	visible	on	the	class	itself	rather	than	on	the
instances.	In	this	example,	we	use	static	on	the	origin,	as	it's	a	general	value	for
all	grids.	Each	instance	accesses	this	value	through	prepending	the	name	of	the
class.	Similarly	to	prepending	this.	in	front	of	instance	accesses,	here	we
prepend	Grid.	in	front	of	static	accesses.

class	Grid	{

		static	origin	=	{	x:	0,	y:	0	};

		calculateDistanceFromOrigin(point:	{	x:	number;	y:	number	})	{

				let	xDist	=	point.x	-	Grid.origin.x;

				let	yDist	=	point.y	-	Grid.origin.y;

				return	Math.sqrt(xDist	*	xDist	+	yDist	*	yDist)	/	this.scale;

		}

		constructor(public	scale:	number)	{}

}

let	grid1	=	new	Grid(1.0);	//	1x	scale

let	grid2	=	new	Grid(5.0);	//	5x	scale

console.log(grid1.calculateDistanceFromOrigin({	x:	10,	y:	10	}));

console.log(grid2.calculateDistanceFromOrigin({	x:	10,	y:	10	}));

Abstract	Classes

Abstract	classes	are	base	classes	from	which	other	classes	may	be	derived.	They
may	not	be	instantiated	directly.	Unlike	an	interface,	an	abstract	class	may
contain	implementation	details	for	its	members.	The	abstract	keyword	is	used
to	define	abstract	classes	as	well	as	abstract	methods	within	an	abstract	class.

abstract	class	Animal	{

		abstract	makeSound():	void;

		move():	void	{

				console.log("roaming	the	earth...");

		}

}

Methods	within	an	abstract	class	that	are	marked	as	abstract	do	not	contain	an
implementation	and	must	be	implemented	in	derived	classes.	Abstract	methods
share	a	similar	syntax	to	interface	methods.	Both	define	the	signature	of	a
method	without	including	a	method	body.	However,	abstract	methods	must
include	the	abstract	keyword	and	may	optionally	include	access	modifiers.

abstract	class	Department	{

		constructor(public	name:	string)	{}

		printName():	void	{

				console.log("Department	name:	"	+	this.name);

		}

		abstract	printMeeting():	void;	//	must	be	implemented	in	derived	classes

}

class	AccountingDepartment	extends	Department	{

		constructor()	{

				super("Accounting	and	Auditing");	//	constructors	in	derived	classes	must	call	super()

		}

		printMeeting():	void	{

				console.log("The	Accounting	Department	meets	each	Monday	at	10am.");

		}

		generateReports():	void	{

				console.log("Generating	accounting	reports...");

		}

}

let	department:	Department;	//	ok	to	create	a	reference	to	an	abstract	type

department	=	new	Department();	//	error:	cannot	create	an	instance	of	an	abstract	class

department	=	new	AccountingDepartment();	//	ok	to	create	and	assign	a	non-abstract	subclass

department.printName();

department.printMeeting();

department.generateReports();	//	error:	method	doesn't	exist	on	declared	abstract	type

Advanced	Techniques

Constructor	functions

When	you	declare	a	class	in	TypeScript,	you	are	actually	creating	multiple
declarations	at	the	same	time.	The	first	is	the	type	of	the	instance	of	the	class.

class	Greeter	{

		greeting:	string;

		constructor(message:	string)	{

				this.greeting	=	message;

		}

		greet()	{

				return	"Hello,	"	+	this.greeting;

		}

}

let	greeter:	Greeter;

greeter	=	new	Greeter("world");

console.log(greeter.greet());	//	"Hello,	world"

Here,	when	we	say	let	greeter:	Greeter,	we're	using	Greeter	as	the	type	of
instances	of	the	class	Greeter.	This	is	almost	second	nature	to	programmers	from
other	object-oriented	languages.

We're	also	creating	another	value	that	we	call	the	constructor	function.	This	is
the	function	that	is	called	when	we	new	up	instances	of	the	class.	To	see	what	this
looks	like	in	practice,	let's	take	a	look	at	the	JavaScript	created	by	the	above
example:

let	Greeter	=	(function()	{

		function	Greeter(message)	{

				this.greeting	=	message;

		}

		Greeter.prototype.greet	=	function()	{

				return	"Hello,	"	+	this.greeting;

		};

		return	Greeter;

})();

let	greeter;

greeter	=	new	Greeter("world");

console.log(greeter.greet());	//	"Hello,	world"

Here,	let	Greeter	is	going	to	be	assigned	the	constructor	function.	When	we
call	new	and	run	this	function,	we	get	an	instance	of	the	class.	The	constructor
function	also	contains	all	of	the	static	members	of	the	class.	Another	way	to
think	of	each	class	is	that	there	is	an	instance	side	and	a	static	side.

Let's	modify	the	example	a	bit	to	show	this	difference:

class	Greeter	{

		static	standardGreeting	=	"Hello,	there";

		greeting:	string;

		greet()	{

				if	(this.greeting)	{

						return	"Hello,	"	+	this.greeting;

				}	else	{

						return	Greeter.standardGreeting;

				}

		}

}

let	greeter1:	Greeter;

greeter1	=	new	Greeter();

console.log(greeter1.greet());	//	"Hello,	there"

let	greeterMaker:	typeof	Greeter	=	Greeter;

greeterMaker.standardGreeting	=	"Hey	there!";

let	greeter2:	Greeter	=	new	greeterMaker();

console.log(greeter2.greet());	//	"Hey	there!"

In	this	example,	greeter1	works	similarly	to	before.	We	instantiate	the	Greeter
class,	and	use	this	object.	This	we	have	seen	before.

Next,	we	then	use	the	class	directly.	Here	we	create	a	new	variable	called
greeterMaker.	This	variable	will	hold	the	class	itself,	or	said	another	way	its
constructor	function.	Here	we	use	typeof	Greeter,	that	is	"give	me	the	type	of
the	Greeter	class	itself"	rather	than	the	instance	type.	Or,	more	precisely,	"give
me	the	type	of	the	symbol	called	Greeter,"	which	is	the	type	of	the	constructor
function.	This	type	will	contain	all	of	the	static	members	of	Greeter	along	with
the	constructor	that	creates	instances	of	the	Greeter	class.	We	show	this	by	using
new	on	greeterMaker,	creating	new	instances	of	Greeter	and	invoking	them	as
before.

Using	a	class	as	an	interface

As	we	said	in	the	previous	section,	a	class	declaration	creates	two	things:	a	type
representing	instances	of	the	class	and	a	constructor	function.	Because	classes
create	types,	you	can	use	them	in	the	same	places	you	would	be	able	to	use
interfaces.

class	Point	{

		x:	number;

		y:	number;

}

interface	Point3d	extends	Point	{

		z:	number;

}

let	point3d:	Point3d	=	{	x:	1,	y:	2,	z:	3	};

Enums
Enums	are	one	of	the	few	features	TypeScript	has	which	is	not	a	type-level
extension	of	JavaScript.

Enums	allow	a	developer	to	define	a	set	of	named	constants.	Using	enums	can
make	it	easier	to	document	intent,	or	create	a	set	of	distinct	cases.	TypeScript
provides	both	numeric	and	string-based	enums.

Numeric	enums

We'll	first	start	off	with	numeric	enums,	which	are	probably	more	familiar	if
you're	coming	from	other	languages.	An	enum	can	be	defined	using	the	enum
keyword.

enum	Direction	{

		Up	=	1,

		Down,

		Left,

		Right

}

Above,	we	have	a	numeric	enum	where	Up	is	initialized	with	1.	All	of	the
following	members	are	auto-incremented	from	that	point	on.	In	other	words,
Direction.Up	has	the	value	1,	Down	has	2,	Left	has	3,	and	Right	has	4.

If	we	wanted,	we	could	leave	off	the	initializers	entirely:

enum	Direction	{

		Up,

		Down,

		Left,

		Right

}

Here,	Up	would	have	the	value	0,	Down	would	have	1,	etc.	This	auto-incrementing
behavior	is	useful	for	cases	where	we	might	not	care	about	the	member	values

themselves,	but	do	care	that	each	value	is	distinct	from	other	values	in	the	same
enum.

Using	an	enum	is	simple:	just	access	any	member	as	a	property	off	of	the	enum
itself,	and	declare	types	using	the	name	of	the	enum:

enum	Response	{

		No	=	0,

		Yes	=	1

}

function	respond(recipient:	string,	message:	Response):	void	{

		//	...

}

respond("Princess	Caroline",	Response.Yes);

Numeric	enums	can	be	mixed	in	computed	and	constant	members	(see	below).
The	short	story	is,	enums	without	initializers	either	need	to	be	first,	or	have	to
come	after	numeric	enums	initialized	with	numeric	constants	or	other	constant
enum	members.	In	other	words,	the	following	isn't	allowed:

enum	E	{

		A	=	getSomeValue(),

		B	//	Error!	Enum	member	must	have	initializer.

}

String	enums

String	enums	are	a	similar	concept,	but	have	some	subtle	runtime	differences	as
documented	below.	In	a	string	enum,	each	member	has	to	be	constant-initialized
with	a	string	literal,	or	with	another	string	enum	member.

enum	Direction	{

		Up	=	"UP",

		Down	=	"DOWN",

		Left	=	"LEFT",

		Right	=	"RIGHT"

}

While	string	enums	don't	have	auto-incrementing	behavior,	string	enums	have

the	benefit	that	they	"serialize"	well.	In	other	words,	if	you	were	debugging	and
had	to	read	the	runtime	value	of	a	numeric	enum,	the	value	is	often	opaque	-	it
doesn't	convey	any	useful	meaning	on	its	own	(though	reverse	mapping	can
often	help),	string	enums	allow	you	to	give	a	meaningful	and	readable	value
when	your	code	runs,	independent	of	the	name	of	the	enum	member	itself.

Heterogeneous	enums

Technically	enums	can	be	mixed	with	string	and	numeric	members,	but	it's	not
clear	why	you	would	ever	want	to	do	so:

enum	BooleanLikeHeterogeneousEnum	{

		No	=	0,

		Yes	=	"YES"

}

Unless	you're	really	trying	to	take	advantage	of	JavaScript's	runtime	behavior	in
a	clever	way,	it's	advised	that	you	don't	do	this.

Computed	and	constant	members

Each	enum	member	has	a	value	associated	with	it	which	can	be	either	constant
or	computed.	An	enum	member	is	considered	constant	if:

It	is	the	first	member	in	the	enum	and	it	has	no	initializer,	in	which	case	it's
assigned	the	value	0:

//	E.X	is	constant:

enum	E	{

		X

}

It	does	not	have	an	initializer	and	the	preceding	enum	member	was	a
numeric	constant.	In	this	case	the	value	of	the	current	enum	member	will	be
the	value	of	the	preceding	enum	member	plus	one.

//	All	enum	members	in	'E1'	and	'E2'	are	constant.

enum	E1	{

		X,

		Y,

		Z

}

enum	E2	{

		A	=	1,

		B,

		C

}

The	enum	member	is	initialized	with	a	constant	enum	expression.	A
constant	enum	expression	is	a	subset	of	TypeScript	expressions	that	can	be
fully	evaluated	at	compile	time.	An	expression	is	a	constant	enum
expression	if	it	is:

1.	 a	literal	enum	expression	(basically	a	string	literal	or	a	numeric	literal)
2.	 a	reference	to	previously	defined	constant	enum	member	(which	can

originate	from	a	different	enum)
3.	 a	parenthesized	constant	enum	expression
4.	 one	of	the	+,	-,	~	unary	operators	applied	to	constant	enum	expression
5.	 +,	-,	*,	/,	%,	<<,	>>,	>>>,	&,	|,	^	binary	operators	with	constant	enum

expressions	as	operands

It	is	a	compile	time	error	for	constant	enum	expressions	to	be	evaluated	to
NaN	or	Infinity.

In	all	other	cases	enum	member	is	considered	computed.

enum	FileAccess	{

		//	constant	members

		None,

		Read	=	1	<<	1,

		Write	=	1	<<	2,

		ReadWrite	=	Read	|	Write,

		//	computed	member

		G	=	"123".length

}

Union	enums	and	enum	member	types

There	is	a	special	subset	of	constant	enum	members	that	aren't	calculated:	literal
enum	members.	A	literal	enum	member	is	a	constant	enum	member	with	no
initialized	value,	or	with	values	that	are	initialized	to

any	string	literal	(e.g.	"foo",	"bar,	"baz")
any	numeric	literal	(e.g.	1,	100)
a	unary	minus	applied	to	any	numeric	literal	(e.g.	-1,	-100)

When	all	members	in	an	enum	have	literal	enum	values,	some	special	semantics
come	to	play.

The	first	is	that	enum	members	also	become	types	as	well!	For	example,	we	can
say	that	certain	members	can	only	have	the	value	of	an	enum	member:

enum	ShapeKind	{

		Circle,

		Square

}

interface	Circle	{

		kind:	ShapeKind.Circle;

		radius:	number;

}

interface	Square	{

		kind:	ShapeKind.Square;

		sideLength:	number;

}

let	c:	Circle	=	{

		kind:	ShapeKind.Square,	//	Error!	Type	'ShapeKind.Square'	is	not	assignable	to	type	'ShapeKind.Circle'.

		radius:	100

};

The	other	change	is	that	enum	types	themselves	effectively	become	a	union	of
each	enum	member.	While	we	haven't	discussed	union	types	yet,	all	that	you
need	to	know	is	that	with	union	enums,	the	type	system	is	able	to	leverage	the
fact	that	it	knows	the	exact	set	of	values	that	exist	in	the	enum	itself.	Because	of
that,	TypeScript	can	catch	silly	bugs	where	we	might	be	comparing	values
incorrectly.	For	example:

enum	E	{

		Foo,

		Bar

}

function	f(x:	E)	{

		if	(x	!==	E.Foo	||	x	!==	E.Bar)	{

				//													~~~~~~~~~~~

				//	Error!	This	condition	will	always	return	'true'	since	the	types	'E.Foo'	and	'E.Bar'	have	no	overlap.

		}

}

In	that	example,	we	first	checked	whether	x	was	not	E.Foo.	If	that	check
succeeds,	then	our	||	will	short-circuit,	and	the	body	of	the	'if'	will	run.
However,	if	the	check	didn't	succeed,	then	x	can	only	be	E.Foo,	so	it	doesn't
make	sense	to	see	whether	it's	equal	to	E.Bar.

Enums	at	runtime

Enums	are	real	objects	that	exist	at	runtime.	For	example,	the	following	enum

enum	E	{

		X,

		Y,

		Z

}

can	actually	be	passed	around	to	functions

function	f(obj:	{	X:	number	})	{

		return	obj.X;

}

//	Works,	since	'E'	has	a	property	named	'X'	which	is	a	number.

f(E);

Enums	at	compile	time

Even	though	Enums	are	real	objects	that	exist	at	runtime,	the	keyof	keyword

works	differently	than	you	might	expect	for	typical	objects.	Instead,	use	keyof
typeof	to	get	a	Type	that	represents	all	Enum	keys	as	strings.

enum	LogLevel	{

		ERROR,

		WARN,

		INFO,

		DEBUG

}

/**

	*	This	is	equivalent	to:

	*	type	LogLevelStrings	=	'ERROR'	|	'WARN'	|	'INFO'	|	'DEBUG';

	*/

type	LogLevelStrings	=	keyof	typeof	LogLevel;

function	printImportant(key:	LogLevelStrings,	message:	string)	{

		const	num	=	LogLevel[key];

		if	(num	<=	LogLevel.WARN)	{

				console.log("Log	level	key	is:",	key);

				console.log("Log	level	value	is:",	num);

				console.log("Log	level	message	is:",	message);

		}

}

printImportant("ERROR",	"This	is	a	message");

Reverse	mappings
In	addition	to	creating	an	object	with	property	names	for	members,	numeric
enums	members	also	get	a	reverse	mapping	from	enum	values	to	enum	names.
For	example,	in	this	example:

enum	Enum	{

		A

}

let	a	=	Enum.A;

let	nameOfA	=	Enum[a];	//	"A"

TypeScript	might	compile	this	down	to	something	like	the	following	JavaScript:

var	Enum;

(function(Enum)	{

		Enum[(Enum["A"]	=	0)]	=	"A";

})(Enum	||	(Enum	=	{}));

var	a	=	Enum.A;

var	nameOfA	=	Enum[a];	//	"A"

In	this	generated	code,	an	enum	is	compiled	into	an	object	that	stores	both
forward	(name	->	value)	and	reverse	(value	->	name)	mappings.	References	to
other	enum	members	are	always	emitted	as	property	accesses	and	never	inlined.

Keep	in	mind	that	string	enum	members	do	not	get	a	reverse	mapping	generated
at	all.

const	enums
In	most	cases,	enums	are	a	perfectly	valid	solution.	However	sometimes
requirements	are	tighter.	To	avoid	paying	the	cost	of	extra	generated	code	and
additional	indirection	when	accessing	enum	values,	it's	possible	to	use	const
enums.	Const	enums	are	defined	using	the	const	modifier	on	our	enums:

const	enum	Enum	{

		A	=	1,

		B	=	A	*	2

}

Const	enums	can	only	use	constant	enum	expressions	and	unlike	regular	enums
they	are	completely	removed	during	compilation.	Const	enum	members	are
inlined	at	use	sites.	This	is	possible	since	const	enums	cannot	have	computed
members.

const	enum	Directions	{

		Up,

		Down,

		Left,

		Right

}

let	directions	=	[

		Directions.Up,

		Directions.Down,

		Directions.Left,

		Directions.Right

];

in	generated	code	will	become

var	directions	=	[0	/*	Up	*/,	1	/*	Down	*/,	2	/*	Left	*/,	3	/*	Right	*/

Ambient	enums

Ambient	enums	are	used	to	describe	the	shape	of	already	existing	enum	types.

declare	enum	Enum	{

		A	=	1,

		B,

		C	=	2

}

One	important	difference	between	ambient	and	non-ambient	enums	is	that,	in
regular	enums,	members	that	don't	have	an	initializer	will	be	considered	constant
if	its	preceding	enum	member	is	considered	constant.	In	contrast,	an	ambient
(and	non-const)	enum	member	that	does	not	have	initializer	is	always	considered
computed.

Generics

Introduction

A	major	part	of	software	engineering	is	building	components	that	not	only	have
well-defined	and	consistent	APIs,	but	are	also	reusable.	Components	that	are
capable	of	working	on	the	data	of	today	as	well	as	the	data	of	tomorrow	will	give
you	the	most	flexible	capabilities	for	building	up	large	software	systems.

In	languages	like	C#	and	Java,	one	of	the	main	tools	in	the	toolbox	for	creating
reusable	components	is	generics,	that	is,	being	able	to	create	a	component	that
can	work	over	a	variety	of	types	rather	than	a	single	one.	This	allows	users	to
consume	these	components	and	use	their	own	types.

Hello	World	of	Generics

To	start	off,	let's	do	the	"hello	world"	of	generics:	the	identity	function.	The
identity	function	is	a	function	that	will	return	back	whatever	is	passed	in.	You
can	think	of	this	in	a	similar	way	to	the	echo	command.

Without	generics,	we	would	either	have	to	give	the	identity	function	a	specific
type:

function	identity(arg:	number):	number	{

		return	arg;

}

Or,	we	could	describe	the	identity	function	using	the	any	type:

function	identity(arg:	any):	any	{

		return	arg;

}

While	using	any	is	certainly	generic	in	that	it	will	cause	the	function	to	accept
any	and	all	types	for	the	type	of	arg,	we	actually	are	losing	the	information	about
what	that	type	was	when	the	function	returns.	If	we	passed	in	a	number,	the	only

information	we	have	is	that	any	type	could	be	returned.

Instead,	we	need	a	way	of	capturing	the	type	of	the	argument	in	such	a	way	that
we	can	also	use	it	to	denote	what	is	being	returned.	Here,	we	will	use	a	type
variable,	a	special	kind	of	variable	that	works	on	types	rather	than	values.

function	identity<T>(arg:	T):	T	{

		return	arg;

}

We've	now	added	a	type	variable	T	to	the	identity	function.	This	T	allows	us	to
capture	the	type	the	user	provides	(e.g.	number),	so	that	we	can	use	that
information	later.	Here,	we	use	T	again	as	the	return	type.	On	inspection,	we	can
now	see	the	same	type	is	used	for	the	argument	and	the	return	type.	This	allows
us	to	traffic	that	type	information	in	one	side	of	the	function	and	out	the	other.

We	say	that	this	version	of	the	identity	function	is	generic,	as	it	works	over	a
range	of	types.	Unlike	using	any,	it's	also	just	as	precise	(ie,	it	doesn't	lose	any
information)	as	the	first	identity	function	that	used	numbers	for	the	argument
and	return	type.

Once	we've	written	the	generic	identity	function,	we	can	call	it	in	one	of	two
ways.	The	first	way	is	to	pass	all	of	the	arguments,	including	the	type	argument,
to	the	function:

let	output	=	identity<string>("myString");	//	type	of	output	will	be	'string'

Here	we	explicitly	set	T	to	be	string	as	one	of	the	arguments	to	the	function	call,
denoted	using	the	<>	around	the	arguments	rather	than	().

The	second	way	is	also	perhaps	the	most	common.	Here	we	use	type	argument
inference	--	that	is,	we	want	the	compiler	to	set	the	value	of	T	for	us
automatically	based	on	the	type	of	the	argument	we	pass	in:

let	output	=	identity("myString");	//	type	of	output	will	be	'string'

Notice	that	we	didn't	have	to	explicitly	pass	the	type	in	the	angle	brackets	(<>);
the	compiler	just	looked	at	the	value	"myString",	and	set	T	to	its	type.	While	type
argument	inference	can	be	a	helpful	tool	to	keep	code	shorter	and	more	readable,
you	may	need	to	explicitly	pass	in	the	type	arguments	as	we	did	in	the	previous

example	when	the	compiler	fails	to	infer	the	type,	as	may	happen	in	more
complex	examples.

Working	with	Generic	Type	Variables

When	you	begin	to	use	generics,	you'll	notice	that	when	you	create	generic
functions	like	identity,	the	compiler	will	enforce	that	you	use	any	generically
typed	parameters	in	the	body	of	the	function	correctly.	That	is,	that	you	actually
treat	these	parameters	as	if	they	could	be	any	and	all	types.

Let's	take	our	identity	function	from	earlier:

function	identity<T>(arg:	T):	T	{

		return	arg;

}

What	if	we	want	to	also	log	the	length	of	the	argument	arg	to	the	console	with
each	call?	We	might	be	tempted	to	write	this:

function	loggingIdentity<T>(arg:	T):	T	{

		console.log(arg.length);	//	Error:	T	doesn't	have	.length

		return	arg;

}

When	we	do,	the	compiler	will	give	us	an	error	that	we're	using	the	.length
member	of	arg,	but	nowhere	have	we	said	that	arg	has	this	member.	Remember,
we	said	earlier	that	these	type	variables	stand	in	for	any	and	all	types,	so
someone	using	this	function	could	have	passed	in	a	number	instead,	which	does
not	have	a	.length	member.

Let's	say	that	we've	actually	intended	this	function	to	work	on	arrays	of	T	rather
than	T	directly.	Since	we're	working	with	arrays,	the	.length	member	should	be
available.	We	can	describe	this	just	like	we	would	create	arrays	of	other	types:

function	loggingIdentity<T>(arg:	T[]):	T[]	{

		console.log(arg.length);	//	Array	has	a	.length,	so	no	more	error

		return	arg;

}

You	can	read	the	type	of	loggingIdentity	as	"the	generic	function

loggingIdentity	takes	a	type	parameter	T,	and	an	argument	arg	which	is	an
array	of	Ts,	and	returns	an	array	of	Ts."	If	we	passed	in	an	array	of	numbers,	we'd
get	an	array	of	numbers	back	out,	as	T	would	bind	to	number.	This	allows	us	to
use	our	generic	type	variable	T	as	part	of	the	types	we're	working	with,	rather
than	the	whole	type,	giving	us	greater	flexibility.

We	can	alternatively	write	the	sample	example	this	way:

function	loggingIdentity<T>(arg:	Array<T>):	Array<T>	{

		console.log(arg.length);	//	Array	has	a	.length,	so	no	more	error

		return	arg;

}

You	may	already	be	familiar	with	this	style	of	type	from	other	languages.	In	the
next	section,	we'll	cover	how	you	can	create	your	own	generic	types	like
Array<T>.

Generic	Types

In	previous	sections,	we	created	generic	identity	functions	that	worked	over	a
range	of	types.	In	this	section,	we'll	explore	the	type	of	the	functions	themselves
and	how	to	create	generic	interfaces.

The	type	of	generic	functions	is	just	like	those	of	non-generic	functions,	with	the
type	parameters	listed	first,	similarly	to	function	declarations:

function	identity<T>(arg:	T):	T	{

		return	arg;

}

let	myIdentity:	<T>(arg:	T)	=>	T	=	identity;

We	could	also	have	used	a	different	name	for	the	generic	type	parameter	in	the
type,	so	long	as	the	number	of	type	variables	and	how	the	type	variables	are	used
line	up.

function	identity<T>(arg:	T):	T	{

		return	arg;

}

let	myIdentity:	<U>(arg:	U)	=>	U	=	identity;

We	can	also	write	the	generic	type	as	a	call	signature	of	an	object	literal	type:

function	identity<T>(arg:	T):	T	{

		return	arg;

}

let	myIdentity:	{	<T>(arg:	T):	T	}	=	identity;

Which	leads	us	to	writing	our	first	generic	interface.	Let's	take	the	object	literal
from	the	previous	example	and	move	it	to	an	interface:

interface	GenericIdentityFn	{

		<T>(arg:	T):	T;

}

function	identity<T>(arg:	T):	T	{

		return	arg;

}

let	myIdentity:	GenericIdentityFn	=	identity;

In	a	similar	example,	we	may	want	to	move	the	generic	parameter	to	be	a
parameter	of	the	whole	interface.	This	lets	us	see	what	type(s)	we're	generic	over
(e.g.	Dictionary<string>	rather	than	just	Dictionary).	This	makes	the	type
parameter	visible	to	all	the	other	members	of	the	interface.

interface	GenericIdentityFn<T>	{

		(arg:	T):	T;

}

function	identity<T>(arg:	T):	T	{

		return	arg;

}

let	myIdentity:	GenericIdentityFn<number>	=	identity;

Notice	that	our	example	has	changed	to	be	something	slightly	different.	Instead
of	describing	a	generic	function,	we	now	have	a	non-generic	function	signature
that	is	a	part	of	a	generic	type.	When	we	use	GenericIdentityFn,	we	now	will
also	need	to	specify	the	corresponding	type	argument	(here:	number),	effectively
locking	in	what	the	underlying	call	signature	will	use.	Understanding	when	to
put	the	type	parameter	directly	on	the	call	signature	and	when	to	put	it	on	the
interface	itself	will	be	helpful	in	describing	what	aspects	of	a	type	are	generic.

In	addition	to	generic	interfaces,	we	can	also	create	generic	classes.	Note	that	it

In	addition	to	generic	interfaces,	we	can	also	create	generic	classes.	Note	that	it
is	not	possible	to	create	generic	enums	and	namespaces.

Generic	Classes

A	generic	class	has	a	similar	shape	to	a	generic	interface.	Generic	classes	have	a
generic	type	parameter	list	in	angle	brackets	(<>)	following	the	name	of	the	class.

class	GenericNumber<T>	{

		zeroValue:	T;

		add:	(x:	T,	y:	T)	=>	T;

}

let	myGenericNumber	=	new	GenericNumber<number>();

myGenericNumber.zeroValue	=	0;

myGenericNumber.add	=	function(x,	y)	{

		return	x	+	y;

};

This	is	a	pretty	literal	use	of	the	GenericNumber	class,	but	you	may	have	noticed
that	nothing	is	restricting	it	to	only	use	the	number	type.	We	could	have	instead
used	string	or	even	more	complex	objects.

let	stringNumeric	=	new	GenericNumber<string>();

stringNumeric.zeroValue	=	"";

stringNumeric.add	=	function(x,	y)	{

		return	x	+	y;

};

console.log(stringNumeric.add(stringNumeric.zeroValue,	"test"));

Just	as	with	interface,	putting	the	type	parameter	on	the	class	itself	lets	us	make
sure	all	of	the	properties	of	the	class	are	working	with	the	same	type.

As	we	covered	in	our	section	on	classes,	a	class	has	two	sides	to	its	type:	the
static	side	and	the	instance	side.	Generic	classes	are	only	generic	over	their
instance	side	rather	than	their	static	side,	so	when	working	with	classes,	static
members	can	not	use	the	class's	type	parameter.

Generic	Constraints

https://www.staging-typescript.org/docs/handbook/classes.html

If	you	remember	from	an	earlier	example,	you	may	sometimes	want	to	write	a
generic	function	that	works	on	a	set	of	types	where	you	have	some	knowledge
about	what	capabilities	that	set	of	types	will	have.	In	our	loggingIdentity
example,	we	wanted	to	be	able	to	access	the	.length	property	of	arg,	but	the
compiler	could	not	prove	that	every	type	had	a	.length	property,	so	it	warns	us
that	we	can't	make	this	assumption.

function	loggingIdentity<T>(arg:	T):	T	{

		console.log(arg.length);	//	Error:	T	doesn't	have	.length

		return	arg;

}

Instead	of	working	with	any	and	all	types,	we'd	like	to	constrain	this	function	to
work	with	any	and	all	types	that	also	have	the	.length	property.	As	long	as	the
type	has	this	member,	we'll	allow	it,	but	it's	required	to	have	at	least	this
member.	To	do	so,	we	must	list	our	requirement	as	a	constraint	on	what	T	can
be.

To	do	so,	we'll	create	an	interface	that	describes	our	constraint.	Here,	we'll	create
an	interface	that	has	a	single	.length	property	and	then	we'll	use	this	interface
and	the	extends	keyword	to	denote	our	constraint:

interface	Lengthwise	{

		length:	number;

}

function	loggingIdentity<T	extends	Lengthwise>(arg:	T):	T	{

		console.log(arg.length);	//	Now	we	know	it	has	a	.length	property,	so	no	more	error

		return	arg;

}

Because	the	generic	function	is	now	constrained,	it	will	no	longer	work	over	any
and	all	types:

loggingIdentity(3);	//	Error,	number	doesn't	have	a	.length	property

Instead,	we	need	to	pass	in	values	whose	type	has	all	the	required	properties:

loggingIdentity({	length:	10,	value:	3	});

Using	Type	Parameters	in	Generic	Constraints

Using	Type	Parameters	in	Generic	Constraints

You	can	declare	a	type	parameter	that	is	constrained	by	another	type	parameter.
For	example,	here	we'd	like	to	get	a	property	from	an	object	given	its	name.
We'd	like	to	ensure	that	we're	not	accidentally	grabbing	a	property	that	does	not
exist	on	the	obj,	so	we'll	place	a	constraint	between	the	two	types:

function	getProperty<T,	K	extends	keyof	T>(obj:	T,	key:	K)	{

		return	obj[key];

}

let	x	=	{	a:	1,	b:	2,	c:	3,	d:	4	};

getProperty(x,	"a");	//	okay

getProperty(x,	"m");	//	error:	Argument	of	type	'm'	isn't	assignable	to	'a'	|	'b'	|	'c'	|	'd'.

Using	Class	Types	in	Generics

When	creating	factories	in	TypeScript	using	generics,	it	is	necessary	to	refer	to
class	types	by	their	constructor	functions.	For	example,

function	create<T>(c:	{	new	():	T	}):	T	{

		return	new	c();

}

A	more	advanced	example	uses	the	prototype	property	to	infer	and	constrain
relationships	between	the	constructor	function	and	the	instance	side	of	class
types.

class	BeeKeeper	{

		hasMask:	boolean;

}

class	ZooKeeper	{

		nametag:	string;

}

class	Animal	{

		numLegs:	number;

}

class	Bee	extends	Animal	{

		keeper:	BeeKeeper;

}

class	Lion	extends	Animal	{

		keeper:	ZooKeeper;

}

function	createInstance<A	extends	Animal>(c:	new	()	=>	A):	A	{

		return	new	c();

}

createInstance(Lion).keeper.nametag;	//	typechecks!

createInstance(Bee).keeper.hasMask;	//	typechecks!

	TypeScript Handbook
	Table of Contents
	The TypeScript Handbook
	Basic Types
	Interfaces
	Functions
	Literal Types
	Unions and Intersection Types
	Classes
	Enums
	Generics

